enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Outcome measure - Wikipedia

    en.wikipedia.org/wiki/Outcome_measure

    Outcomes measures should be relevant to the target of the intervention (be it a single person or a target population). [2] Depending on the design of a trial, outcome measures can be either primary outcomes, in which case the trial is designed around finding an adequate study size (through proper randomization and power calculation). [1]

  3. Average treatment effect - Wikipedia

    en.wikipedia.org/wiki/Average_treatment_effect

    The average treatment effect (ATE) is a measure used to compare treatments (or interventions) in randomized experiments, evaluation of policy interventions, and medical trials. The ATE measures the difference in mean (average) outcomes between units assigned to the treatment and units assigned to the control.

  4. Design of experiments - Wikipedia

    en.wikipedia.org/wiki/Design_of_experiments

    The use of a sequence of experiments, where the design of each may depend on the results of previous experiments, including the possible decision to stop experimenting, is within the scope of sequential analysis, a field that was pioneered [12] by Abraham Wald in the context of sequential tests of statistical hypotheses. [13]

  5. Impact evaluation - Wikipedia

    en.wikipedia.org/wiki/Impact_evaluation

    The most common form of impact evaluation design is comparing two groups of individuals or other units, an intervention group that receives the program and a control group that does not. The estimate of program effect is then based on the difference between the groups on a suitable outcome measure (Rossi et al., 2004).

  6. Effect size - Wikipedia

    en.wikipedia.org/wiki/Effect_size

    In statistics, an effect size is a value measuring the strength of the relationship between two variables in a population, or a sample-based estimate of that quantity. It can refer to the value of a statistic calculated from a sample of data, the value of one parameter for a hypothetical population, or to the equation that operationalizes how statistics or parameters lead to the effect size ...

  7. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    In statistical modeling, regression analysis is a set of statistical processes for estimating the relationships between a dependent variable (often called the outcome or response variable, or a label in machine learning parlance) and one or more error-free independent variables (often called regressors, predictors, covariates, explanatory ...

  8. Difference in differences - Wikipedia

    en.wikipedia.org/wiki/Difference_in_differences

    Difference in differences (DID [1] or DD [2]) is a statistical technique used in econometrics and quantitative research in the social sciences that attempts to mimic an experimental research design using observational study data, by studying the differential effect of a treatment on a 'treatment group' versus a 'control group' in a natural experiment. [3]

  9. Routine health outcomes measurement - Wikipedia

    en.wikipedia.org/wiki/Routine_health_outcomes...

    The reliability (statistics) and validity (statistics) of any measure of health status must be known so that their impact on the assessment of health outcomes can be taken into account. In mental health services these values may be quite low, especially when carried out routinely by staff rather than by trained researchers, and when using short ...