Search results
Results from the WOW.Com Content Network
The cross-lagged panel model is a type of discrete time structural equation model used to analyze panel data in which two or more variables are repeatedly measured at two or more different time points. This model aims to estimate the directional effects that one variable has on another at different points in time.
Graphs of maps, especially those of one variable such as the logistic map, are key to understanding the behavior of the map. One of the uses of graphs is to illustrate fixed points, called points. Draw a line y = x (a 45° line) on the graph of the map. If there is a point where this 45° line intersects with the graph, that point is a fixed point.
An RR tachograph is a graph of the numerical value of the RR-interval versus time. In the context of RR tachography, a Poincaré plot is a graph of RR(n) on the x-axis versus RR(n + 1) (the succeeding RR interval) on the y-axis, i.e. one takes a sequence of intervals and plots each interval against the following interval. [3]
If μ is greater than 1 the system has two fixed points, one at 0, and the other at μ/(μ + 1). Both fixed points are unstable, i.e. a value of x close to either fixed point will move away from it, rather than towards it. For example, when μ is 1.5 there is a fixed point at x = 0.6 (since 1.5(1 − 0.6) = 0.6) but starting at x = 0.61 we get
Negative causal link means that the two variables change in opposite directions, i.e. if the variable in which the link starts increases, then the other variable decreases, and vice versa. Example [ edit ]
A diffeomorphism between two Riemannian manifolds is called a conformal map if the pulled back metric is conformally equivalent to the original one. For example, stereographic projection of a sphere onto the plane augmented with a point at infinity is a conformal map.
The all-pairs shortest path problem finds the shortest paths between every pair of vertices v, v' in the graph. The all-pairs shortest paths problem for unweighted directed graphs was introduced by Shimbel (1953), who observed that it could be solved by a linear number of matrix multiplications that takes a total time of O(V 4).
A Karnaugh map (KM or K-map) is a diagram that can be used to simplify a Boolean algebra expression. Maurice Karnaugh introduced it in 1953 [ 1 ] [ 2 ] as a refinement of Edward W. Veitch 's 1952 Veitch chart , [ 3 ] [ 4 ] which itself was a rediscovery of Allan Marquand 's 1881 logical diagram [ 5 ] [ 6 ] (aka.