Search results
Results from the WOW.Com Content Network
The n × n square rook's graph, i.e., the line graph of a balanced complete bipartite graph K n,n, is an srg(n 2, 2n − 2, n − 2, 2). The parameters for n = 4 coincide with those of the Shrikhande graph, but the two graphs are not isomorphic.
A directed graph. A classic form of state diagram for a finite automaton (FA) is a directed graph with the following elements (Q, Σ, Z, δ, q 0, F): [2] [3]. Vertices Q: a finite set of states, normally represented by circles and labeled with unique designator symbols or words written inside them
The vertex-connectivity of an input graph G can be computed in polynomial time in the following way [4] consider all possible pairs (,) of nonadjacent nodes to disconnect, using Menger's theorem to justify that the minimal-size separator for (,) is the number of pairwise vertex-independent paths between them, encode the input by doubling each vertex as an edge to reduce to a computation of the ...
A complete bipartite graph of K 4,7 showing that Turán's brick factory problem with 4 storage sites (yellow spots) and 7 kilns (blue spots) requires 18 crossings (red dots) For any k, K 1,k is called a star. [2] All complete bipartite graphs which are trees are stars. The graph K 1,3 is called a claw, and is used to define the claw-free graphs ...
Every graph is the line graph of some hypergraph, but, given a fixed edge size k, not every graph is a line graph of some k-uniform hypergraph. A main problem is to characterize those that are, for each k ≥ 3. A hypergraph is linear if each pair of hyperedges intersects in at most one vertex. Every graph is the line graph, not only of some ...
The absolutely maximally entangled (AME) state is a concept in quantum information science, which has many applications in quantum error-correcting code, [1] discrete AdS/CFT correspondence, [2] AdS/CMT correspondenc e, [2] and more. It is the multipartite generalization of the bipartite maximally entangled state.
If k = 3 (solid line circle) it is assigned to the red triangles because there are 2 triangles and only 1 square inside the inner circle. If k = 5 (dashed line circle) it is assigned to the blue squares (3 squares vs. 2 triangles inside the outer circle). The training examples are vectors in a multidimensional feature space, each with a class ...
The Kneser graph K(n, 1) is the complete graph on n vertices. The Kneser graph K(n, 2) is the complement of the line graph of the complete graph on n vertices. The Kneser graph K(2n − 1, n − 1) is the odd graph O n; in particular O 3 = K(5, 2) is the Petersen graph (see top right figure). The Kneser graph O 4 = K(7, 3), visualized on the right.