Search results
Results from the WOW.Com Content Network
Function rank is an important concept to array programming languages in general, by analogy to tensor rank in mathematics: functions that operate on data may be classified by the number of dimensions they act on. Ordinary multiplication, for example, is a scalar ranked function because it operates on zero-dimensional data (individual numbers).
MATLAB (an abbreviation of "MATrix LABoratory" [18]) is a proprietary multi-paradigm programming language and numeric computing environment developed by MathWorks.MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages.
Sigma function: Sums of powers of divisors of a given natural number. Euler's totient function: Number of numbers coprime to (and not bigger than) a given one. Prime-counting function: Number of primes less than or equal to a given number. Partition function: Order-independent count of ways to write a given positive integer as a sum of positive ...
Here, the traditional BLAS functions provide typically good performance for large matrices. However, when computing e.g., matrix-matrix-products of many small matrices by using the GEMM routine, those architectures show significant performance losses. To address this issue, in 2017 a batched version of the BLAS function has been specified. [52]
The matrix of the linear map mapping the vector of the entries of a matrix to the vector of a part of the entries (for example the vector of the entries that are not below the main diagonal) See vectorization: Exchange matrix: The binary matrix with ones on the anti-diagonal, and zeroes everywhere else. a ij = δ n+1−i,j: A permutation matrix.
Throughout this article, boldfaced unsubscripted and are used to refer to random vectors, and Roman subscripted and are used to refer to scalar random variables.. If the entries in the column vector = (,, …,) are random variables, each with finite variance and expected value, then the covariance matrix is the matrix whose (,) entry is the covariance [1]: 177 ...
In mathematics, matrix calculus is a specialized notation for doing multivariable calculus, especially over spaces of matrices.It collects the various partial derivatives of a single function with respect to many variables, and/or of a multivariate function with respect to a single variable, into vectors and matrices that can be treated as single entities.
The dotted vector, in this case B, is differentiated, while the (undotted) A is held constant. The utility of the Feynman subscript notation lies in its use in the derivation of vector and tensor derivative identities, as in the following example which uses the algebraic identity C⋅(A×B) = (C×A)⋅B: