Search results
Results from the WOW.Com Content Network
Substituting a fluorine into a para position, however, protects the aromatic ring and prevents the epoxide from being produced. [13] Adding fluorine to biologically active organic compounds increases their lipophilicity (ability to dissolve in fats), because the carbon–fluorine bond is even more hydrophobic than the carbon–hydrogen bond.
The covalent radius of fluorine of about 71 picometers found in F 2 molecules is significantly larger than that in other compounds because of this weak bonding between the two fluorine atoms. [9] This is a result of the relatively large electron and internuclear repulsions, combined with a relatively small overlap of bonding orbitals arising ...
Hydrofluorocarbons (HFCs) are synthetic organic compounds that contain fluorine and hydrogen atoms, and are the most common type of organofluorine compounds. Most are gases at room temperature and pressure.
Elemental fluorine and virtually all fluorine compounds are produced from hydrogen fluoride or its aqueous solution, hydrofluoric acid. Hydrogen fluoride is produced in kilns by the endothermic reaction of fluorite (CaF 2) with sulfuric acid: [169] CaF 2 + H 2 SO 4 → 2 HF(g) + CaSO 4. The gaseous HF can then be absorbed in water or liquefied ...
The most common F-gases are hydrofluorocarbons (HFCs), which contain hydrogen, fluorine, and carbon. They are used in a multitude of applications including commercial refrigeration, industrial refrigeration, air-conditioning systems, heat pump equipment, and as blowing agents for foams, fire extinguishants, aerosol propellants, and solvents.
Hydrofluorocarbons (HFCs), organic compounds that contain fluorine and hydrogen atoms, are the most common type of organofluorine compounds. They are commonly used in air conditioning and as refrigerants [5] in place of the older chlorofluorocarbons such as R-12 and hydrochlorofluorocarbons such as R-21.
Hydrofluoric acid is a solution of hydrogen fluoride (HF) in water.Solutions of HF are colorless, acidic and highly corrosive.A common concentration is 49% (48-52%) but there are also stronger solutions (e.g. 70%) and pure HF has a boiling point near room temperature.
Hydrogen fluoride is typically produced by the reaction between sulfuric acid and pure grades of the mineral fluorite: [14] CaF 2 + H 2 SO 4 → 2 HF + CaSO 4 About 20% of manufactured HF is a byproduct of fertilizer production, which generates hexafluorosilicic acid .