Search results
Results from the WOW.Com Content Network
The Sellmeier equation is an empirical relationship between refractive index and wavelength for a particular transparent medium. The equation is used to determine the dispersion of light in the medium. It was first proposed in 1872 by Wolfgang Sellmeier and was a development of the work of Augustin Cauchy on Cauchy's equation for modelling ...
Wolfgang Sellmeier was a German theoretical physicist who made major contributions to the understanding of the interactions between light and matter. [1] In 1872 he published his seminal work Ueber die durch die Aetherschwingungen erregten Mitschwingungen der Körpertheilchen und deren Rückwirkung auf die ersteren, besonders zur Erklärung der Dispersion und ihrer Anomalien. [2]
Download QR code; Print/export Download as PDF; ... Table of Coefficients of Sellmeier equation; Coefficient: for ordinary wave: for extraordinary wave: B 1: 1.43134930:
Their effects can be computed via numerical evaluation of Fourier transforms of the waveform, via integration of higher-order slowly varying envelope approximations, by a split-step method (which can use the exact dispersion relation rather than a Taylor series), or by direct simulation of the full Maxwell's equations rather than an approximate ...
The Forouhi–Bloomer dispersion equations describe how photons of varying energies interact with thin films. When used with a spectroscopic reflectometry tool, the Forouhi–Bloomer dispersion equations specify n and k for amorphous and crystalline materials as a function of photon energy E.
Meep (MIT Electromagnetic Equation Propagation) is a free and open-source [1] software package for electromagnetic simulations, developed by ab initio research group at Massachusetts Institute of Technology in 2006.
This page was last edited on 4 November 2021, at 17:07 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
In optics, Cauchy's transmission equation is an empirical relationship between the refractive index and wavelength of light for a particular transparent material. It is named for the mathematician Augustin-Louis Cauchy , who originally defined it in 1830 in his article "The refraction and reflection of light".