Search results
Results from the WOW.Com Content Network
Kirchhoff's current law is the basis of nodal analysis. In electric circuits analysis, nodal analysis, node-voltage analysis, or the branch current method is a method of determining the voltage (potential difference) between "nodes" (points where elements or branches connect) in an electrical circuit in terms of the branch currents.
In electronics, a current divider is a simple linear circuit that produces an output current (I X) that is a fraction of its input current (I T). Current division refers to the splitting of current between the branches of the divider. The currents in the various branches of such a circuit will always divide in such a way as to minimize the ...
In electrical engineering, Millman's theorem [1] (or the parallel generator theorem) is a method to simplify the solution of a circuit. Specifically, Millman's theorem is used to compute the voltage at the ends of a circuit made up of only branches in parallel. It is named after Jacob Millman, who proved the theorem.
The total current through or the total voltage across a particular branch is then calculated by summing all the individual currents or voltages. There is an underlying assumption to this method that the total current or voltage is a linear superposition of its parts. Therefore, the method cannot be used if non-linear components are present.
Graphs used in network analysis are usually, in addition, both directed graphs, to capture the direction of current flow and voltage, and labelled graphs, to capture the uniqueness of the branches and nodes. For instance, a graph consisting of a square of branches would still be the same topological graph if two branches were interchanged ...
The following is the skeleton of a generic branch and bound algorithm for minimizing an arbitrary objective function f. [3] To obtain an actual algorithm from this, one requires a bounding function bound, that computes lower bounds of f on nodes of the search tree, as well as a problem-specific branching rule.
The later R4000 uses the same trivial "not-taken" branch prediction, and loses two cycles to each taken branch because the branch resolution recurrence is four cycles long. Branch prediction became more important with the introduction of pipelined superscalar processors like the Intel Pentium , DEC Alpha 21064 , the MIPS R8000 , and the IBM ...
Mesh analysis (or the mesh current method) is a circuit analysis method for planar circuits. Planar circuits are circuits that can be drawn on a plane surface with no wires crossing each other. A more general technique, called loop analysis (with the corresponding network variables called loop currents ) can be applied to any circuit, planar or ...