enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Binomial coefficient - Wikipedia

    en.wikipedia.org/wiki/Binomial_coefficient

    A more efficient method to compute individual binomial coefficients is given by the formula = _! = () (()) () = = +, where the numerator of the first fraction, _, is a falling factorial. This formula is easiest to understand for the combinatorial interpretation of binomial coefficients.

  3. Binomial theorem - Wikipedia

    en.wikipedia.org/wiki/Binomial_theorem

    In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power ⁠ (+) ⁠ expands into a polynomial with terms of the form ⁠ ⁠, where the exponents ⁠ ⁠ and ⁠ ⁠ are nonnegative integers satisfying ⁠ + = ⁠ and the coefficient ⁠ ⁠ of each term is a specific positive integer ...

  4. FOIL method - Wikipedia

    en.wikipedia.org/wiki/FOIL_method

    The FOIL rule converts a product of two binomials into a sum of four (or fewer, if like terms are then combined) monomials. [6] The reverse process is called factoring or factorization. In particular, if the proof above is read in reverse it illustrates the technique called factoring by grouping.

  5. Binomial distribution - Wikipedia

    en.wikipedia.org/wiki/Binomial_distribution

    A Binomial distributed random variable X ~ B(n, p) can be considered as the sum of n Bernoulli distributed random variables. So the sum of two Binomial distributed random variables X ~ B(n, p) and Y ~ B(m, p) is equivalent to the sum of n + m Bernoulli distributed random variables, which means Z = X + Y ~ B(n + m, p). This can also be proven ...

  6. Pascal's rule - Wikipedia

    en.wikipedia.org/wiki/Pascal's_rule

    In mathematics, Pascal's rule (or Pascal's formula) is a combinatorial identity about binomial coefficients.It states that for positive natural numbers n and k, + = (), where () is a binomial coefficient; one interpretation of the coefficient of the x k term in the expansion of (1 + x) n.

  7. Multinomial theorem - Wikipedia

    en.wikipedia.org/wiki/Multinomial_theorem

    Multinomial coefficient as a product of binomial coefficients, counting the permutations of the letters of MISSISSIPPI. The multinomial coefficient (, …,) is also the number of distinct ways to permute a multiset of n elements, where k i is the multiplicity of each of the i th element. For example, the number of distinct permutations of the ...

  8. Binomial approximation - Wikipedia

    en.wikipedia.org/wiki/Binomial_approximation

    The binomial approximation for the square root, + + /, can be applied for the following expression, + where and are real but .. The mathematical form for the binomial approximation can be recovered by factoring out the large term and recalling that a square root is the same as a power of one half.

  9. Ruffini's rule - Wikipedia

    en.wikipedia.org/wiki/Ruffini's_rule

    Ruffini's rule can be used when one needs the quotient of a polynomial P by a binomial of the form . (When one needs only the remainder, the polynomial remainder theorem provides a simpler method.) A typical example, where one needs the quotient, is the factorization of a polynomial p ( x ) {\displaystyle p(x)} for which one knows a root r :