Search results
Results from the WOW.Com Content Network
Sodium hydroxide, also known as lye and caustic soda, [1] [2] is an inorganic compound with the formula NaOH. It is a white solid ionic compound consisting of sodium cations Na + and hydroxide anions OH −. Sodium hydroxide is a highly corrosive base and alkali that decomposes lipids and proteins at ambient temperatures and may cause severe ...
For example, sodium hydroxide, NaOH, is a strong base. NaOH(aq) → Na + (aq) + OH − (aq) Therefore, when a strong acid reacts with a strong base the neutralization reaction can be written as H + + OH − → H 2 O. For example, in the reaction between hydrochloric acid and sodium hydroxide the sodium and chloride ions, Na + and Cl − take ...
In chemistry and thermodynamics, the enthalpy of neutralization (ΔH n) is the change in enthalpy that occurs when one equivalent of an acid and a base undergo a neutralization reaction to form water and a salt. It is a special case of the enthalpy of reaction. It is defined as the energy released with the formation of 1 mole of water.
The energy released by the solvation of the ammonium ions and nitrate ions is less than the energy absorbed in breaking up the ammonium nitrate ionic lattice and the attractions between water molecules. Dissolving potassium hydroxide is exothermic, as more energy is released during solvation than is used in breaking up the solute and solvent.
In thermochemistry, a thermochemical equation is a balanced chemical equation that represents the energy changes from a system to its surroundings. One such equation involves the enthalpy change, which is denoted with Δ H {\displaystyle \Delta H} In variable form, a thermochemical equation would appear similar to the following:
For many substances, the formation reaction may be considered as the sum of a number of simpler reactions, either real or fictitious. The enthalpy of reaction can then be analyzed by applying Hess' law, which states that the sum of the enthalpy changes for a number of individual reaction steps equals the enthalpy change of the overall reaction.
The process has a high energy consumption, for example around 2,500 kWh (9,000 MJ) of electricity per tonne of sodium hydroxide produced. Because the process yields equivalent amounts of chlorine and sodium hydroxide (two moles of sodium hydroxide per mole of chlorine), it is necessary to find a use for these products in the same proportion ...
The Van 't Hoff equation relates the change in the equilibrium constant, K eq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, Δ r H ⊖, for the process. The subscript r {\displaystyle r} means "reaction" and the superscript ⊖ {\displaystyle \ominus } means "standard".