Search results
Results from the WOW.Com Content Network
Events trigger responses or actions and are fundamental to event-driven systems. These events can be handled synchronously, where the execution thread is blocked until the event handler completes its processing, or asynchronously, where the event is processed independently, often through an event loop.
In particular, the POSIX specification and the Linux man page signal (7) require that all system functions directly or indirectly called from a signal function are async-signal safe. [6] [7] The signal-safety(7) man page gives a list of such async-signal safe system functions (practically the system calls), otherwise it is an undefined behavior ...
For example, a single left-button mouse-click on a command button in a GUI program may trigger a routine that will open another window, save data to a database or exit the application. Many IDEs provide the programmer with GUI event templates, allowing the programmer to focus on writing the event code.
A hardware interrupt is a condition related to the state of the hardware that may be signaled by an external hardware device, e.g., an interrupt request (IRQ) line on a PC, or detected by devices embedded in processor logic (e.g., the CPU timer in IBM System/370), to communicate that the device needs attention from the operating system (OS) [7] or, if there is no OS, from the bare metal ...
A SLIH completes long interrupt processing tasks similarly to a process. SLIHs either have a dedicated kernel thread for each handler, or are executed by a pool of kernel worker threads. These threads sit on a run queue in the operating system until processor time is available for them to perform processing for the interrupt. SLIHs may have a ...
The kill command is a wrapper around the kill() system call, which sends signals to processes or process groups on the system, referenced by their numeric process IDs (PIDs) or process group IDs (PGIDs). kill is always provided as a standalone utility as defined by the POSIX standard.
The reactor software design pattern is an event handling strategy that can respond to many potential service requests concurrently.The pattern's key component is an event loop, running in a single thread or process, which demultiplexes incoming requests and dispatches them to the correct request handler.
std::this_thread::yield() in the language C++, introduced in C++11. The Yield method is provided in various object-oriented programming languages with multithreading support, such as C# and Java. [2] OOP languages generally provide class abstractions for thread objects. yield in Kotlin