Search results
Results from the WOW.Com Content Network
The spiral is started with an isosceles right triangle, with each leg having unit length.Another right triangle (which is the only automedian right triangle) is formed, with one leg being the hypotenuse of the prior right triangle (with length the square root of 2) and the other leg having length of 1; the length of the hypotenuse of this second right triangle is the square root of 3.
The Ulam spiral or prime spiral is a graphical depiction of the set of prime numbers, devised by mathematician Stanisław Ulam in 1963 and popularized in Martin Gardner's Mathematical Games column in Scientific American a short time later. [1] It is constructed by writing the positive integers in a square spiral and specially marking the prime ...
A logarithmic spiral, equiangular spiral, or growth spiral is a self-similar spiral curve that often appears in nature. The first to describe a logarithmic spiral was Albrecht Dürer (1525) who called it an "eternal line" ("ewige Linie").
Microsoft Office Excel – for MS Windows and Apple Macintosh. The proprietary spreadsheet leader. Microsoft Works Spreadsheet – for MS Windows (previously MS-DOS and Apple Macintosh). Only allows one sheet at a time. PlanMaker – for MS Windows, Linux, MS Windows Mobile and CE; part of SoftMaker Office
A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...
The length of the side of a larger square to the next smaller square is in the golden ratio. For a square with side length 1, the next smaller square is 1/φ wide. The next width is 1/φ², then 1/φ³, and so on. There are several comparable spirals that approximate, but do not exactly equal, a golden spiral. [2]
Notations expressing that f is a functional square root of g are f = g [1/2] and f = g 1/2 [citation needed] [dubious – discuss], or rather f = g 1/2 (see Iterated function#Fractional_iterates_and_flows,_and_negative_iterates), although this leaves the usual ambiguity with taking the function to that power in the multiplicative sense, just as f ² = f ∘ f can be misinterpreted as x ↦ f(x)².
A table of constants that includes the same approximation of the square root of 2 as YBC 7289 is the tablet YBC 7243. The constant appears on line 10 of the table along with the inscription, "the diagonal of a square". [2] [4] [5] The mathematical significance of this tablet was first recognized by Otto E. Neugebauer and Abraham Sachs in 1945.