enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Inverse dynamics - Wikipedia

    en.wikipedia.org/wiki/Inverse_dynamics

    Kinematics; Inverse kinematics: a problem similar to Inverse dynamics but with different goals and starting assumptions.While inverse dynamics asks for torques that produce a certain time-trajectory of positions and velocities, inverse kinematics only asks for a static set of joint angles such that a certain point (or a set of points) of the character (or robot) is positioned at a certain ...

  3. Compatibility (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Compatibility_(mechanics)

    The problem of compatibility in continuum mechanics involves the determination of allowable single-valued continuous fields on simply connected bodies. More precisely, the problem may be stated in the following manner. [5] Figure 1. Motion of a continuum body. Consider the deformation of a body shown in Figure 1.

  4. Kinematics - Wikipedia

    en.wikipedia.org/wiki/Kinematics

    [4] [5] [6] A kinematics problem begins by describing the geometry of the system and declaring the initial conditions of any known values of position, velocity and/or acceleration of points within the system. Then, using arguments from geometry, the position, velocity and acceleration of any unknown parts of the system can be determined.

  5. Chebychev–Grübler–Kutzbach criterion - Wikipedia

    en.wikipedia.org/wiki/Chebychev–Grübler...

    The Chebychev–Grübler–Kutzbach criterion determines the number of degrees of freedom of a kinematic chain, that is, a coupling of rigid bodies by means of mechanical constraints. [1] These devices are also called linkages .

  6. Rigid body dynamics - Wikipedia

    en.wikipedia.org/wiki/Rigid_body_dynamics

    In the physical science of dynamics, rigid-body dynamics studies the movement of systems of interconnected bodies under the action of external forces.The assumption that the bodies are rigid (i.e. they do not deform under the action of applied forces) simplifies analysis, by reducing the parameters that describe the configuration of the system to the translation and rotation of reference ...

  7. Newton–Euler equations - Wikipedia

    en.wikipedia.org/wiki/Newton–Euler_equations

    With respect to a coordinate frame whose origin coincides with the body's center of mass for τ() and an inertial frame of reference for F(), they can be expressed in matrix form as:

  8. Kinematics equations - Wikipedia

    en.wikipedia.org/wiki/Kinematics_equations

    From this point of view the kinematics equations can be used in two different ways. The first called forward kinematics uses specified values for the joint parameters to compute the end-effector position and orientation. The second called inverse kinematics uses the position and orientation of the end-effector to compute the joint parameters ...

  9. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.