Search results
Results from the WOW.Com Content Network
The curl of a 3-dimensional vector field which only depends on 2 coordinates (say x and y) is simply a vertical vector field (in the z direction) whose magnitude is the curl of the 2-dimensional vector field, as in the examples on this page. Considering curl as a 2-vector field (an antisymmetric 2-tensor) has been used to generalize vector ...
C: curl, G: gradient, L: Laplacian, CC: curl of curl. Each arrow is labeled with the result of an identity, specifically, the result of applying the operator at the arrow's tail to the operator at its head. The blue circle in the middle means curl of curl exists, whereas the other two red circles (dashed) mean that DD and GG do not exist.
An illustration of Stokes' theorem, with surface Σ, its boundary ∂Σ and the normal vector n.The direction of positive circulation of the bounding contour ∂Σ, and the direction n of positive flux through the surface Σ, are related by a right-hand-rule (i.e., the right hand the fingers circulate along ∂Σ and the thumb is directed along n).
An alternate approach, more along the lines of passive transformations, is to keep the universe fixed, but switch "right-hand rule" with "left-hand rule" everywhere in math and physics, including in the definition of the cross product and the curl. Any polar vector (e.g., a translation vector) would be unchanged, but pseudovectors (e.g., the ...
Re – real part of a complex number. [2] (Also written.) resp – respectively. RHS – right-hand side of an equation. rk – rank. (Also written as rank.) RMS, rms – root mean square. rng – non-unital ring. rot – rotor of a vector field. (Also written as curl.) rowsp – row space of a matrix. RTP – required to prove.
For example, if the domain of integration is defined as the plane region between two -coordinates and the graphs of two functions, it will often happen that the domain has corners. In such a case, the corner points mean that Ω {\displaystyle \Omega } is not a smooth manifold with boundary, and so the statement of Stokes' theorem given above ...
The current examples are misleading, especially the firs: it starts out with a vector field that is rotating, and tries to implicate that the curl should be non-zero because the vector field is rotating: counter example: 1/(x^2+y^2) (-y,x) . This field rotates quite vigorously, yet it's curl is zero. Another example: (y,0).
Mathematical visualization is used throughout mathematics, particularly in the fields of geometry and analysis. Notable examples include plane curves , space curves , polyhedra , ordinary differential equations , partial differential equations (particularly numerical solutions, as in fluid dynamics or minimal surfaces such as soap films ...