enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Perceptron - Wikipedia

    en.wikipedia.org/wiki/Perceptron

    The perceptron algorithm is also termed the single-layer perceptron, to distinguish it from a multilayer perceptron, which is a misnomer for a more complicated neural network. As a linear classifier, the single-layer perceptron is the simplest feedforward neural network .

  3. Perceptrons (book) - Wikipedia

    en.wikipedia.org/wiki/Perceptrons_(book)

    The perceptron convergence theorem was proved for single-layer neural nets. [12] During this period, neural net research was a major approach to the brain-machine issue that had been taken by a significant number of individuals. [12]

  4. Multilayer perceptron - Wikipedia

    en.wikipedia.org/wiki/Multilayer_perceptron

    If a multilayer perceptron has a linear activation function in all neurons, that is, a linear function that maps the weighted inputs to the output of each neuron, then linear algebra shows that any number of layers can be reduced to a two-layer input-output model.

  5. History of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/History_of_artificial...

    A multilayer perceptron (MLP) comprised 3 layers: an input layer, a hidden layer with randomized weights that did not learn, and an output layer. With mathematical notation, Rosenblatt described circuitry not in the basic perceptron, such as the exclusive-or circuit that could not be processed by neural networks at the time.

  6. Mark I Perceptron - Wikipedia

    en.wikipedia.org/wiki/Mark_I_Perceptron

    The Mark I Perceptron achieved 99.8% accuracy on a test dataset with 500 neurons in a single layer. The size of the training dataset was 10,000 example images. It took 3 seconds for the training pipeline to go through a single image.

  7. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    Neurons of one layer connect only to neurons of the immediately preceding and immediately following layers. The layer that receives external data is the input layer. The layer that produces the ultimate result is the output layer. In between them are zero or more hidden layers. Single layer and unlayered networks are also used.

  8. Universal approximation theorem - Wikipedia

    en.wikipedia.org/wiki/Universal_approximation...

    In particular, this shows that a perceptron network with a single infinitely wide hidden layer can approximate arbitrary functions. Such an can also be approximated by a network of greater depth by using the same construction for the first layer and approximating the identity function with later layers.

  9. ADALINE - Wikipedia

    en.wikipedia.org/wiki/ADALINE

    Learning inside a single-layer ADALINE Photo of an ADALINE machine, with hand-adjustable weights implemented by rheostats Schematic of a single ADALINE unit [1]. ADALINE (Adaptive Linear Neuron or later Adaptive Linear Element) is an early single-layer artificial neural network and the name of the physical device that implemented it.