Search results
Results from the WOW.Com Content Network
Alternatively, it is possible to use mathematical induction to prove the degree sum formula, [2] or to prove directly that the number of odd-degree vertices is even, by removing one edge at a time from a given graph and using a case analysis on the degrees of its endpoints to determine the effect of this removal on the parity of the number of ...
The degree sequence problem is the problem of finding some or all graphs with the degree sequence being a given non-increasing sequence of positive integers. (Trailing zeroes may be ignored since they are trivially realized by adding an appropriate number of isolated vertices to the graph.) A sequence which is the degree sequence of some simple ...
As the Haus vom Nikolaus puzzle has two odd-degree vertices (orange), the trail must start at one and end at the other. A variant with four odd-degree vertices has no solution. If there are no odd-degree vertices, the trail can start anywhere and forms an Eulerian cycle. Loose ends are considered vertices of degree 1. The graph must also be ...
In graph theory, Brooks' theorem states a relationship between the maximum degree of a graph and its chromatic number. According to the theorem, in a connected graph in which every vertex has at most Δ neighbors, the vertices can be colored with only Δ colors, except for two cases, complete graphs and cycle graphs of odd length, which require ...
The odd graph = (,) In the mathematical field of graph theory, the odd graphs are a family of symmetric graphs defined from certain set systems. They include and generalize the Petersen graph. The odd graphs have high odd girth, meaning that they contain long odd-length cycles but no short ones.
Therefore, the vertex of G corresponding to the outer area has an odd degree. But it is known (the handshaking lemma) that in a finite graph there is an even number of vertices with odd degree. Therefore, the remaining graph, excluding the outer area, has an odd number of vertices with odd degree corresponding to members of T.
An graph (or a component) with an odd number of vertices cannot have a perfect matching, since there will always be a vertex left alone. The goal is to characterize all graphs that do not have a perfect matching. Start with the most obvious case of a graph without a perfect matching: a graph with an odd number of vertices.
In graph theory, a regular graph is a graph where each vertex has the same number of neighbors; i.e. every vertex has the same degree or valency. A regular directed graph must also satisfy the stronger condition that the indegree and outdegree of each internal vertex are equal to each other. [1]