Search results
Results from the WOW.Com Content Network
Gene delivery is a necessary step in gene therapy for the introduction or silencing of a gene to promote a therapeutic outcome in patients and also has applications in the genetic modification of crops. There are many different methods of gene delivery for various types of cells and tissues.
There are several binary vectors that replicate in Agrobacterium and can be used for delivery of T-DNA from Agrobacterium into plant cells. The T-DNA portion of the binary vector is flanked by left and right border sequences and may include a transgene as well as a plant selectable marker.
The ability of Agrobacterium to transfer genes to plants and fungi is used in biotechnology, in particular, genetic engineering for plant improvement. Genomes of plants and fungi can be engineered by use of Agrobacterium for the delivery of sequences hosted in T-DNA binary vectors. A modified Ti or Ri plasmid can be used.
This method can be used to generate transgenic plants carrying a foreign gene. Agrobacterium tumefaciens is capable of transferring foreign DNA to both monocotyledons and dicotyledonous plants efficiently while taking care of critically important factors like the genotype of plants, types and ages of tissues inoculated, kind of vectors, strains ...
A number of methods are available to transfer DNA into plant cells. Some vector-mediated methods are: Agrobacterium-mediated transformation is the easiest and most simple plant transformation. Plant tissue (often leaves) are cut into small pieces, e.g. 10x10mm, and soaked for ten minutes in a fluid containing suspended Agrobacterium. The ...
Chemicals include methods such as lipofection, which is a lipid-mediated DNA-transfection process utilizing liposome vectors. It can also include the use of polymeric gene carriers (polyplexes). [6] Biological transfection is typically mediated by viruses, utilizing the ability of a virus to inject its DNA inside a host cell. A gene that is ...
Shortly after the Asilomar Conference, Marc Van Montagu and Jeff Schell discovered the gene transfer mechanism between Agrobacterium and plants, which resulted in the development of methods to alter the bacterium into an efficient delivery system for genetic engineering in plants. [29]
Agroinfiltration using a promoter::GUS construct in Nicotiana benthamiana" with TBSV p19 (right leaf disc) and without TBSV p19 (left leaf disc).. It is quite common to coinfiltrate the Agrobacterium carrying the construct of interest together with another Agrobacterium carrying a silencing suppressor protein gene such as the one encoding the p19 protein from the plant pathogenic Tomato bushy ...