Search results
Results from the WOW.Com Content Network
The correct term for those pieces is "fragments” (nicknamed “splinters” or “shards”). [1] Preformed fragments can be of various shapes (spheres, cubes, rods, etc.) and sizes and are normally held rigidly within some form of matrix or body until the high explosive (HE) filling is detonated.
Example photo of the over-penetration of a fragmenting projectile. This class of projectile is designed to break apart on impact whilst being of a construction more akin to that of an expanding bullet. Fragmenting bullets are usually constructed like the hollow-point projectiles described above, but with deeper and larger cavities.
Some anti-armor weapons incorporate a variant on the shaped charge concept that, depending on the source, can be called an explosively formed penetrator (EFP), self-forging fragment (SFF), self-forging projectile (SEFOP), plate charge, or Misnay Schardin (MS) charge. This warhead type uses the interaction of the detonation waves, and to a ...
Using his ballistic tables along with Bashforth's tables from the 1870 report, Mayevski created an analytical math formula that calculated the air resistances of a projectile in terms of log A and the value n. Although Mayevski's math used a differing approach than Bashforth, the resulting calculation of air resistance was the same.
The surface of the projectile also must be considered: a smooth projectile will face less air resistance than a rough-surfaced one, and irregularities on the surface of a projectile may change its trajectory if they create more drag on one side of the projectile than on the other. However, certain irregularities such as dimples on a golf ball ...
The interaction between projectile (fragments) and target media is however a complex subject. A study regarding hunting bullets shows that besides sectional density several other parameters determine bullet penetration. [5] [6] [7] If all other factors are equal, the projectile with the greatest amount of sectional density will penetrate the ...
Another attempt at building a ballistic calculator is the model presented in 1980 by Dr. Arthur J. Pejsa. [18] Dr. Pejsa claims on his website that his method was consistently capable of predicting (supersonic) rifle bullet trajectories within 2.5 mm (0.1 in) and bullet velocities within 0.3 m/s (1 ft/s) out to 914 m (1,000 yd) in theory. [19]
Projectile motion is a form of motion experienced by an object or particle (a projectile) that is projected in a gravitational field, such as from Earth's surface, and moves along a curved path (a trajectory) under the action of gravity only.