enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bootstrapping (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping_(statistics)

    The studentized bootstrap, also called bootstrap-t, is computed analogously to the standard confidence interval, but replaces the quantiles from the normal or student approximation by the quantiles from the bootstrap distribution of the Student's t-test (see Davison and Hinkley 1997, equ. 5.7 p. 194 and Efron and Tibshirani 1993 equ 12.22, p. 160):

  3. Bootstrap error-adjusted single-sample technique - Wikipedia

    en.wikipedia.org/wiki/Bootstrap_error-adjusted...

    P * is the realized values of P based on a calibration set, T. T is used to find all possible variation in P. P * is bound by parameters C and B. C is the expectation value of P, written E(P), and B is a bootstrapping distribution called the Monte Carlo approximation. The standard deviation can be found using this technique. The values of B ...

  4. Resampling (statistics) - Wikipedia

    en.wikipedia.org/wiki/Resampling_(statistics)

    The best example of the plug-in principle, the bootstrapping method. Bootstrapping is a statistical method for estimating the sampling distribution of an estimator by sampling with replacement from the original sample, most often with the purpose of deriving robust estimates of standard errors and confidence intervals of a population parameter like a mean, median, proportion, odds ratio ...

  5. Out-of-bag error - Wikipedia

    en.wikipedia.org/wiki/Out-of-bag_error

    One set, the bootstrap sample, is the data chosen to be "in-the-bag" by sampling with replacement. The out-of-bag set is all data not chosen in the sampling process. When this process is repeated, such as when building a random forest, many bootstrap samples and OOB sets are created. The OOB sets can be aggregated into one dataset, but each ...

  6. Bootstrapping populations - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping_populations

    Bootstrapping populations in statistics and mathematics starts with a sample {, …,} observed from a random variable.. When X has a given distribution law with a set of non fixed parameters, we denote with a vector , a parametric inference problem consists of computing suitable values – call them estimates – of these parameters precisely on the basis of the sample.

  7. Bootstrapping - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping

    In general, bootstrapping usually refers to a self-starting process that is supposed to continue or grow without external input. Many analytical techniques are often called bootstrap methods in reference to their self-starting or self-supporting implementation, such as bootstrapping (statistics), bootstrapping (finance), or bootstrapping (linguistics).

  8. Sampling error - Wikipedia

    en.wikipedia.org/wiki/Sampling_error

    In statistics, sampling errors are incurred when the statistical characteristics of a population are estimated from a subset, or sample, of that population. Since the sample does not include all members of the population, statistics of the sample (often known as estimators ), such as means and quartiles, generally differ from the statistics of ...

  9. Passing–Bablok regression - Wikipedia

    en.wikipedia.org/wiki/Passing–Bablok_regression

    Passing and Bablok define a method for calculating a 95% confidence interval (CI) for both and in their original paper, [1] which was later refined, [4] though bootstrapping the parameters is the preferred method for in vitro diagnostics (IVD) when using patient samples. [7]