enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stokes' theorem - Wikipedia

    en.wikipedia.org/wiki/Stokes'_theorem

    An illustration of Stokes' theorem, with surface Σ, its boundary ∂Σ and the normal vector n.The direction of positive circulation of the bounding contour ∂Σ, and the direction n of positive flux through the surface Σ, are related by a right-hand-rule (i.e., the right hand the fingers circulate along ∂Σ and the thumb is directed along n).

  3. Generalized Stokes theorem - Wikipedia

    en.wikipedia.org/wiki/Generalized_Stokes_theorem

    In particular, the fundamental theorem of calculus is the special case where the manifold is a line segment, Green’s theorem and Stokes' theorem are the cases of a surface in or , and the divergence theorem is the case of a volume in . [2] Hence, the theorem is sometimes referred to as the fundamental theorem of multivariate calculus.

  4. Stokes' law - Wikipedia

    en.wikipedia.org/wiki/Stokes'_law

    The importance of Stokes' law is illustrated by the fact that it played a critical role in the research leading to at least three Nobel Prizes. [5] Stokes' law is important for understanding the swimming of microorganisms and sperm; also, the sedimentation of small particles and organisms in water, under the force of gravity. [5]

  5. Derivation of the Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the_Navier...

    In order to apply this to the Navier–Stokes equations, three assumptions were made by Stokes: The stress tensor is a linear function of the strain rate tensor or equivalently the velocity gradient. The fluid is isotropic. For a fluid at rest, ∇ ⋅ τ must be zero (so that hydrostatic pressure results).

  6. Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Navier–Stokes_equations

    The Navier–Stokes equations (/ n æ v ˈ j eɪ s t oʊ k s / nav-YAY STOHKS) are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades ...

  7. Curl (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Curl_(mathematics)

    To this definition fits naturally the Kelvin–Stokes theorem, as a global formula corresponding to the definition. It equates the surface integral of the curl of a vector field to the above line integral taken around the boundary of the surface.

  8. Stokes heroics and Bairstow controversy define all-time ... - AOL

    www.aol.com/stokes-heroics-bairstow-controversy...

    Ben Stokes recaptured the spirit of 2019 and Jonny Bairstow’s controversial dismissal sent Lord’s into fury but eventually Australia prevailed

  9. Exterior derivative - Wikipedia

    en.wikipedia.org/wiki/Exterior_derivative

    The theorem of de Rham shows that this map is actually an isomorphism, a far-reaching generalization of the Poincaré lemma. As suggested by the generalized Stokes' theorem, the exterior derivative is the "dual" of the boundary map on singular simplices.