Search results
Results from the WOW.Com Content Network
An illustration of Stokes' theorem, with surface Σ, its boundary ∂Σ and the normal vector n.The direction of positive circulation of the bounding contour ∂Σ, and the direction n of positive flux through the surface Σ, are related by a right-hand-rule (i.e., the right hand the fingers circulate along ∂Σ and the thumb is directed along n).
In particular, the fundamental theorem of calculus is the special case where the manifold is a line segment, Green’s theorem and Stokes' theorem are the cases of a surface in or , and the divergence theorem is the case of a volume in . [2] Hence, the theorem is sometimes referred to as the fundamental theorem of multivariate calculus.
In fluid dynamics, Stokes' law gives the frictional force – also called drag force – exerted on spherical objects moving at very small Reynolds numbers in a viscous fluid. [1] It was derived by George Gabriel Stokes in 1851 by solving the Stokes flow limit for small Reynolds numbers of the Navier–Stokes equations .
In this notation, Stokes' theorem reads as = . In finite element analysis, the first stage is often the approximation of the domain of interest by a triangulation, T. For example, a curve would be approximated as a union of straight line segments; a surface would be approximated by a union of triangles, whose edges are straight line segments ...
The theorem of de Rham shows that this map is actually an isomorphism, a far-reaching generalization of the Poincaré lemma. As suggested by the generalized Stokes' theorem, the exterior derivative is the "dual" of the boundary map on singular simplices.
By Stokes' theorem, the flux of curl or vorticity vectors through a surface S is equal to the circulation around its perimeter, [4] = = = Here, the closed integration path ∂S is the boundary or perimeter of an open surface S , whose infinitesimal element normal d S = n dS is oriented according to the right-hand rule .
In order to find the weak form of the Navier–Stokes equations, firstly, consider the momentum equation [20] + + = multiply it for a test function , defined in a suitable space , and integrate both members with respect to the domain : [20] + + = Counter-integrating by parts the diffusive and the pressure terms and by using the Gauss' theorem ...
Gradient theorem; Stokes' theorem; Divergence theorem; Green's theorem. In a more advanced study of multivariable calculus, it is seen that these four theorems are specific incarnations of a more general theorem, the generalized Stokes' theorem, which applies to the integration of differential forms over manifolds. [2]