enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Martingale (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Martingale_(probability...

    In probability theory, a martingale is a sequence of random variables (i.e., a stochastic process) for which, at a particular time, the conditional expectation of the next value in the sequence is equal to the present value, regardless of all prior values. Stopped Brownian motion is an example of a martingale. It can model an even coin-toss ...

  3. Martingale difference sequence - Wikipedia

    en.wikipedia.org/wiki/Martingale_difference_sequence

    By construction, this implies that if is a martingale, then = will be an MDS—hence the name. The MDS is an extremely useful construct in modern probability theory because it implies much milder restrictions on the memory of the sequence than independence , yet most limit theorems that hold for an independent sequence will also hold for an MDS.

  4. Martingale (betting system) - Wikipedia

    en.wikipedia.org/wiki/Martingale_(betting_system)

    A continuous sequence of martingale bets can thus be partitioned into a sequence of independent rounds. Following is an analysis of the expected value of one round. Let q be the probability of losing (e.g. for American double-zero roulette, it is 20/38 for a bet on black or red).

  5. Doob martingale - Wikipedia

    en.wikipedia.org/wiki/Doob_martingale

    In the mathematical theory of probability, a Doob martingale (named after Joseph L. Doob, [1] also known as a Levy martingale) is a stochastic process that approximates a given random variable and has the martingale property with respect to the given filtration. It may be thought of as the evolving sequence of best approximations to the random ...

  6. Doob's martingale convergence theorems - Wikipedia

    en.wikipedia.org/wiki/Doob's_martingale...

    One may think of supermartingales as the random variable analogues of non-increasing sequences; from this perspective, the martingale convergence theorem is a random variable analogue of the monotone convergence theorem, which states that any bounded monotone sequence converges. There are symmetric results for submartingales, which are ...

  7. Uniform integrability - Wikipedia

    en.wikipedia.org/wiki/Uniform_integrability

    In probability terms, a sequence of random variables converging in probability also converge in the mean if and only if they are uniformly integrable. [17] This is a generalization of Lebesgue's dominated convergence theorem , see Vitali convergence theorem .

  8. Algorithmically random sequence - Wikipedia

    en.wikipedia.org/.../Algorithmically_random_sequence

    The martingale characterization conveys the intuition that no effective procedure should be able to make money betting against a random sequence. A martingale d is a betting strategy. d reads a finite string w and bets money on the next bit. It bets some fraction of its money that the next bit will be 0, and then remainder of its money that the ...

  9. Local martingale - Wikipedia

    en.wikipedia.org/wiki/Local_martingale

    In mathematics, a local martingale is a type of stochastic process, satisfying the localized version of the martingale property. Every martingale is a local martingale; every bounded local martingale is a martingale; in particular, every local martingale that is bounded from below is a supermartingale, and every local martingale that is bounded from above is a submartingale; however, a local ...