Ads
related to: how to do distance problems physics equations and solutionswyzant.com has been visited by 10K+ users in the past month
- In a Rush? Instant Book
Tell us When You Need Help and
Connect With the Right Instructor
- Choose Your Online Tutor
Review Tutor Profiles, Ratings
And Reviews To Find a Perfect Match
- Flexible Hours
Have a 15 Minute or 2 Hour Session.
Only Pay for the Time You Need.
- Tutors Near You
Expert Tutors, Private Sessions.
Tutors From $25/hr. Try Today.
- In a Rush? Instant Book
Search results
Results from the WOW.Com Content Network
A differential equation of motion, usually identified as some physical law (for example, F = ma), and applying definitions of physical quantities, is used to set up an equation to solve a kinematics problem. Solving the differential equation will lead to a general solution with arbitrary constants, the arbitrariness corresponding to a set of ...
The three-body problem is a special case of the n-body problem, which describes how n objects move under one of the physical forces, such as gravity. These problems have a global analytical solution in the form of a convergent power series, as was proven by Karl F. Sundman for n = 3 and by Qiudong Wang for n > 3 (see n-body problem for details
The problem of two fixed centers conserves energy; in other words, the total energy is a constant of motion.The potential energy is given by =where represents the particle's position, and and are the distances between the particle and the centers of force; and are constants that measure the strength of the first and second forces, respectively.
The two-body problem in general relativity (or relativistic two-body problem) is the determination of the motion and gravitational field of two bodies as described by the field equations of general relativity. Solving the Kepler problem is essential to calculate the bending of light by gravity and the motion of a planet orbiting its sun.
These tensor fields should obey any relevant physical laws (for example, any electromagnetic field must satisfy Maxwell's equations).Following a standard recipe which is widely used in mathematical physics, these tensor fields should also give rise to specific contributions to the stress–energy tensor. [1]
By contrast, subtracting equation (2) from equation (1) results in an equation that describes how the vector r = x 1 − x 2 between the masses changes with time. The solutions of these independent one-body problems can be combined to obtain the solutions for the trajectories x 1 (t) and x 2 (t).
The first equation shows that, after one second, an object will have fallen a distance of 1/2 × 9.8 × 1 2 = 4.9 m. After two seconds it will have fallen 1/2 × 9.8 × 2 2 = 19.6 m; and so on. On the other hand, the penultimate equation becomes grossly inaccurate at great distances.
Solving the geodesic equations is a procedure used in mathematics, particularly Riemannian geometry, and in physics, particularly in general relativity, that results in obtaining geodesics. Physically, these represent the paths of (usually ideal) particles with no proper acceleration , their motion satisfying the geodesic equations.
Ads
related to: how to do distance problems physics equations and solutionswyzant.com has been visited by 10K+ users in the past month