Ad
related to: inverse modulo explained worksheet 7th graders pdf file sizeteacherspayteachers.com has been visited by 100K+ users in the past month
- Resources on Sale
The materials you need at the best
prices. Shop limited time offers.
- Worksheets
All the printables you need for
math, ELA, science, and much more.
- Projects
Get instructions for fun, hands-on
activities that apply PK-12 topics.
- Assessment
Creative ways to see what students
know & help them with new concepts.
- Resources on Sale
Search results
Results from the WOW.Com Content Network
A modular multiplicative inverse of a modulo m can be found by using the extended Euclidean algorithm. The Euclidean algorithm determines the greatest common divisor (gcd) of two integers, say a and m. If a has a multiplicative inverse modulo m, this gcd must be 1. The last of several equations produced by the algorithm may be solved for this gcd.
The set of submodules of a given module M, together with the two binary operations + (the module spanned by the union of the arguments) and ∩, forms a lattice that satisfies the modular law: Given submodules U, N 1, N 2 of M such that N 1 ⊆ N 2, then the following two submodules are equal: (N 1 + U) ∩ N 2 = N 1 + (U ∩ N 2).
If the file has been modified from its original state, some details may not fully reflect the modified file. Short title Now we agree that for f(p)= (2p + 8)3 the inverse function is f −1(q)=(q1/3−8)/2
In modular arithmetic, the modular multiplicative inverse of a is also defined: it is the number x such that ax ≡ 1 (mod n). This multiplicative inverse exists if and only if a and n are coprime. For example, the inverse of 3 modulo 11 is 4 because 4 ⋅ 3 ≡ 1 (mod 11). The extended Euclidean algorithm may be used to compute it.
Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.
Finally, given a, the multiplicative inverse of a modulo n is an integer x satisfying ax ≡ 1 (mod n). It exists precisely when a is coprime to n , because in that case gcd( a , n ) = 1 and by Bézout's lemma there are integers x and y satisfying ax + ny = 1 .
Modular exponentiation can be performed with a negative exponent e by finding the modular multiplicative inverse d of b modulo m using the extended Euclidean algorithm. That is: c = b e mod m = d −e mod m, where e < 0 and b ⋅ d ≡ 1 (mod m). Modular exponentiation is efficient to compute, even for very large integers.
When R is a power of a small positive integer b, N′ can be computed by Hensel's lemma: The inverse of N modulo b is computed by a naïve algorithm (for instance, if b = 2 then the inverse is 1), and Hensel's lemma is used repeatedly to find the inverse modulo higher and higher powers of b, stopping when the inverse modulo R is known; N′ is ...
Ad
related to: inverse modulo explained worksheet 7th graders pdf file sizeteacherspayteachers.com has been visited by 100K+ users in the past month