Ad
related to: inverse modulo explained worksheet 7th graders pdf file fullteacherspayteachers.com has been visited by 100K+ users in the past month
- Resources on Sale
The materials you need at the best
prices. Shop limited time offers.
- Lessons
Powerpoints, pdfs, and more to
support your classroom instruction.
- Resources on Sale
Search results
Results from the WOW.Com Content Network
A modular multiplicative inverse of a modulo m can be found by using the extended Euclidean algorithm. The Euclidean algorithm determines the greatest common divisor (gcd) of two integers, say a and m. If a has a multiplicative inverse modulo m, this gcd must be 1. The last of several equations produced by the algorithm may be solved for this gcd.
Finally, given a, the multiplicative inverse of a modulo n is an integer x satisfying ax ≡ 1 (mod n). It exists precisely when a is coprime to n , because in that case gcd( a , n ) = 1 and by Bézout's lemma there are integers x and y satisfying ax + ny = 1 .
In modular arithmetic, the modular multiplicative inverse of a is also defined: it is the number x such that ax ≡ 1 (mod n). This multiplicative inverse exists if and only if a and n are coprime. For example, the inverse of 3 modulo 11 is 4 because 4 ⋅ 3 ≡ 1 (mod 11). The extended Euclidean algorithm may be used to compute it.
This integer a −1 is called a modular multiplicative inverse of a modulo m. If a ≡ b (mod m) and a −1 exists, then a −1 ≡ b −1 (mod m) (compatibility with multiplicative inverse, and, if a = b, uniqueness modulo m). If ax ≡ b (mod m) and a is coprime to m, then the solution to this linear congruence is given by x ≡ a −1 b (mod m).
The set of submodules of a given module M, together with the two binary operations + (the module spanned by the union of the arguments) and ∩, forms a lattice that satisfies the modular law: Given submodules U, N 1, N 2 of M such that N 1 ⊆ N 2, then the following two submodules are equal: (N 1 + U) ∩ N 2 = N 1 + (U ∩ N 2).
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation. Given two positive numbers a and n , a modulo n (often abbreviated as a mod n ) is the remainder of the Euclidean division of a by n , where a is the dividend and n is the divisor .
The multiplicative order of a number a modulo n is the order of a in the multiplicative group whose elements are the residues modulo n of the numbers coprime to n, and whose group operation is multiplication modulo n. This is the group of units of the ring Z n; it has φ(n) elements, φ being Euler's totient function, and is denoted as U(n) or ...
When R is a power of a small positive integer b, N′ can be computed by Hensel's lemma: The inverse of N modulo b is computed by a naïve algorithm (for instance, if b = 2 then the inverse is 1), and Hensel's lemma is used repeatedly to find the inverse modulo higher and higher powers of b, stopping when the inverse modulo R is known; N′ is ...
Ad
related to: inverse modulo explained worksheet 7th graders pdf file fullteacherspayteachers.com has been visited by 100K+ users in the past month