Search results
Results from the WOW.Com Content Network
A memristor (/ ˈ m ɛ m r ɪ s t ər /; a portmanteau of memory resistor) is a non-linear two-terminal electrical component relating electric charge and magnetic flux linkage.It was described and named in 1971 by Leon Chua, completing a theoretical quartet of fundamental electrical components which also comprises the resistor, capacitor and inductor.
A key requirement was the need for a high work function metal such as Pt or Ir to interface with the TaO x layer. The change of O content results in resistance change as well as Schottky barrier change. More recently, a Ta 2 O 5 /TaO x layer was implemented, which still requires the high work function metal to interface with Ta 2 O 5. [61]
For data requests that fall between the table's samples, an interpolation algorithm can generate reasonable approximations by averaging nearby samples." [8] In data analysis applications, such as image processing, a lookup table (LUT) can be used to transform the input data into a more desirable output format. For example, a grayscale picture ...
Often the isolation capabilities are inferior to the use of transistors if the on/off ratio for the selector is not sufficient, limiting the ability to operate very large arrays in this architecture. Chalcogenide-based threshold switches have been demonstrated as a viable selector for high-density PCM arrays [22]
In one of the technical reports [3] the memistor was described as follows: . Like the transistor, the memistor is a 3-terminal element. The conductance between two of the terminals is controlled by the time integral of the current in the third, rather than its instantaneous value as in the transistor.
For years in HTML, a table has always forced an implicit line-wrap (or line-break). So, to keep a table within a line, the workaround is to put the whole line into a table, then embed a table within a table, using the outer table to force the whole line to stay together. Consider the following examples: Wikicode (showing table forces line-break)
The main determinant of a memory system's cost is the density of the components used to make it up. Smaller components, and fewer of them, mean that more "cells" can be packed onto a single chip, which in turn means more can be produced at once from a single silicon wafer.
For example, uncompressed songs in CD format have a data rate of 16 bits/channel x 2 channels x 44.1 kHz ≅ 1.4 Mbit/s, whereas AAC files on an iPod are typically compressed to 128 kbit/s, yielding a compression ratio of 10.9, for a data-rate saving of 0.91, or 91%.