enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Schwarzschild radius - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_radius

    (Supermassive black holes up to 21 billion (2.1 × 10 10) M ☉ have been detected, such as NGC 4889.) [16] Unlike stellar mass black holes, supermassive black holes have comparatively low average densities. (Note that a (non-rotating) black hole is a spherical region in space that surrounds the singularity at its center; it is not the ...

  3. Innermost stable circular orbit - Wikipedia

    en.wikipedia.org/wiki/Innermost_stable_circular...

    As the rotation rate of the black hole increases to the maximum of , the prograde ISCO, marginally bound radius and photon sphere radius decrease down to the event horizon radius at the so-called gravitational radius, still logically and locally distinguishable though.

  4. Ergosphere - Wikipedia

    en.wikipedia.org/wiki/Ergosphere

    The equatorial (maximal) radius of an ergosphere is the Schwarzschild radius, the radius of a non-rotating black hole. The polar (minimal) radius is also the polar (minimal) radius of the event horizon which can be as little as half the Schwarzschild radius for a maximally rotating black hole. [2]

  5. Games on AOL.com: Free online games, chat with others in real ...

    www.aol.com/games/play/masque-publishing/blocked-10

    Discover the best free online games at AOL.com - Play board, card, casino, puzzle and many more online games while chatting with others in real-time.

  6. Sphere of influence (black hole) - Wikipedia

    en.wikipedia.org/wiki/Sphere_of_influence_(black...

    The radius of the sphere of influence is called the "(gravitational) influence radius". There are two definitions in common use for the radius of the sphere of influence. The first [ 1 ] is given by r h = G M BH σ 2 {\displaystyle r_{h}={\frac {GM_{\text{BH}}}{\sigma ^{2}}}} where M BH is the mass of the black hole, σ is the stellar velocity ...

  7. Reverberation mapping - Wikipedia

    en.wikipedia.org/wiki/Reverberation_mapping

    This is where reverberation mapping comes into play. [2] It utilizes the fact that the emission-line fluxes vary strongly in response to changes in the continuum, i.e., the light from the accretion disk near the black hole. Put simply, if the brightness of the accretion disk varies, the emission lines, which are excited in response to the ...

  8. Black hole electron - Wikipedia

    en.wikipedia.org/wiki/Black_hole_electron

    The Schwarzschild radius r s of a mass m is the radius of the event horizon for a non-rotating uncharged black hole of that mass. It is given by r s = 2 G m c 2 , {\displaystyle r_{\text{s}}={\frac {2Gm}{c^{2}}},} where G is the Newtonian constant of gravitation and c is the speed of light .

  9. Gravitational singularity - Wikipedia

    en.wikipedia.org/wiki/Gravitational_singularity

    While in a non-rotating black hole the singularity occurs at a single point in the model coordinates, called a "point singularity", in a rotating black hole, also known as a Kerr black hole, the singularity occurs on a ring (a circular line), known as a "ring singularity". Such a singularity may also theoretically become a wormhole. [18]