enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    For positive real numbers, exponentiation to real powers can be defined in two equivalent ways, either by extending the rational powers to reals by continuity (§ Limits of rational exponents, below), or in terms of the logarithm of the base and the exponential function (§ Powers via logarithms, below).

  3. Power rule - Wikipedia

    en.wikipedia.org/wiki/Power_rule

    Solving for , = = = = = Thus, the power rule applies for rational exponents of the form /, where is a nonzero natural number. This can be generalized to rational exponents of the form p / q {\displaystyle p/q} by applying the power rule for integer exponents using the chain rule, as shown in the next step.

  4. Irrationality measure - Wikipedia

    en.wikipedia.org/wiki/Irrationality_measure

    Rational numbers have irrationality exponent 1, while (as a consequence of Dirichlet's approximation theorem) every irrational number has irrationality exponent at least 2. On the other hand, an application of Borel-Cantelli lemma shows that almost all numbers, including all algebraic irrational numbers , have an irrationality exponent exactly ...

  5. Irrational number - Wikipedia

    en.wikipedia.org/wiki/Irrational_number

    However, there is a second definition of an irrational number used in constructive mathematics, that a real number is an irrational number if it is apart from every rational number, or equivalently, if the distance | | between and every rational number is positive. This definition is stronger than the traditional definition of an irrational number.

  6. Tetration - Wikipedia

    en.wikipedia.org/wiki/Tetration

    It is not known whether n q is rational for any positive integer n and positive non-integer rational q. [20] For example, it is not known whether the positive root of the equation 4 x = 2 is a rational number. [citation needed] It is not known whether e π or π e (defined using Kneser's extension) are rationals or not.

  7. Algebraic expression - Wikipedia

    en.wikipedia.org/wiki/Algebraic_expression

    A rational algebraic expression (or rational expression) is an algebraic expression that can be written as a quotient of polynomials, such as x 2 + 4x + 4. An irrational algebraic expression is one that is not rational, such as √ x + 4.

  8. Rational number - Wikipedia

    en.wikipedia.org/wiki/Rational_number

    In mathematics, "rational" is often used as a noun abbreviating "rational number". The adjective rational sometimes means that the coefficients are rational numbers. For example, a rational point is a point with rational coordinates (i.e., a point whose coordinates are rational numbers); a rational matrix is a matrix of rational numbers; a rational polynomial may be a polynomial with rational ...

  9. Gelfond's constant - Wikipedia

    en.wikipedia.org/wiki/Gelfond's_constant

    In mathematics, the exponential of pi e π, [1] also called Gelfond's constant, [2] is the real number e raised to the power π. Its decimal expansion is given by: e π = 23.140 692 632 779 269 005 72... (sequence A039661 in the OEIS) Like both e and π, this constant is both irrational and transcendental.