Ads
related to: proof system of logic examples geometry
Search results
Results from the WOW.Com Content Network
In logic and mathematics, a formal proof or derivation is a finite sequence of sentences (known as well-formed formulas when relating to formal language), each of which is an axiom, an assumption, or follows from the preceding sentences in the sequence, according to the rule of inference.
In proof by contradiction, also known by the Latin phrase reductio ad absurdum (by reduction to the absurd), it is shown that if some statement is assumed true, a logical contradiction occurs, hence the statement must be false. A famous example involves the proof that is an irrational number:
More exotic proof calculi such as Jean-Yves Girard's proof nets also support a notion of analytic proof. A particular family of analytic proofs arising in reductive logic are focused proofs which characterise a large family of goal-directed proof-search procedures. The ability to transform a proof system into a focused form is a good indication ...
Kleene's work with the proof theory of intuitionistic logic showed that constructive information can be recovered from intuitionistic proofs. For example, any provably total function in intuitionistic arithmetic is computable; this is not true in classical theories of arithmetic such as Peano arithmetic.
3 Other axioms of mathematical logic. 4 Geometry. 5 Other axioms. ... this makes up the system ZFC in which most mathematics is potentially formalisable.
Axiomatic proofs have been used in mathematics since the famous Ancient Greek textbook, Euclid's Elements of Geometry, c. 300 BC. But the first known fully formalized proof system that thereby qualifies as a Hilbert system dates back to Gottlob Frege's 1879 Begriffsschrift.
The Pythagorean theorem has at least 370 known proofs. [1]In mathematics and formal logic, a theorem is a statement that has been proven, or can be proven. [a] [2] [3] The proof of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems.
Predicate logic. First-order logic. Infinitary logic; Many-sorted logic; Higher-order logic. Lindström quantifier; Second-order logic; Soundness theorem; Gödel's completeness theorem. Original proof of Gödel's completeness theorem; Compactness theorem; Löwenheim–Skolem theorem. Skolem's paradox; Gödel's incompleteness theorems; Structure ...
Ads
related to: proof system of logic examples geometry