enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Magnetic moment - Wikipedia

    en.wikipedia.org/wiki/Magnetic_moment

    The net magnetic moment of any system is a vector sum of contributions from one or both types of sources. For example, the magnetic moment of an atom of hydrogen-1 (the lightest hydrogen isotope, consisting of a proton and an electron) is a vector sum of the following contributions: the intrinsic moment of the electron,

  3. Magnetic anisotropy - Wikipedia

    en.wikipedia.org/wiki/Magnetic_anisotropy

    The line parallel to these directions is called the easy axis. In other words, the easy axis is an energetically favorable direction of spontaneous magnetization . Because the two opposite directions along an easy axis are usually equivalently easy to magnetize along, the actual direction of magnetization can just as easily settle into either ...

  4. Force between magnets - Wikipedia

    en.wikipedia.org/wiki/Force_between_magnets

    More precisely, the term magnetic moment normally refers to a system's magnetic dipole moment, which produces the first term in the multipole expansion [note 1] of a general magnetic field. Both the torque and force exerted on a magnet by an external magnetic field are proportional to that magnet's magnetic moment. The magnetic moment is a ...

  5. Earth's magnetic field - Wikipedia

    en.wikipedia.org/wiki/Earth's_magnetic_field

    A magnetic field is a vector field, but if it is expressed in Cartesian components X, Y, Z, each component is the derivative of the same scalar function called the magnetic potential. Analyses of the Earth's magnetic field use a modified version of the usual spherical harmonics that differ by a multiplicative factor.

  6. Magnetosphere particle motion - Wikipedia

    en.wikipedia.org/wiki/Magnetosphere_particle_motion

    The spacing between field lines is an indicator of the relative strength of the magnetic field. Where magnetic field lines converge the field grows stronger, and where they diverge, weaker. Now, it can be shown that in the motion of gyrating particles, the "magnetic moment" μ = W ⊥ /B (or relativistically, p ⊥ 2 /2mγB) stays very nearly ...

  7. Magnetization dynamics - Wikipedia

    en.wikipedia.org/wiki/Magnetization_dynamics

    While the transfer of angular momentum on a magnetic moment from an applied magnetic field is shown to cause precession of the moment about the field axis, the rotation of the moment into alignment with the field occurs through damping processes. Atomic-level dynamics involves interactions between magnetization, electrons, and phonons. [3]

  8. Ising model - Wikipedia

    en.wikipedia.org/wiki/Ising_model

    The Ising model (or Lenz–Ising model), named after the physicists Ernst Ising and Wilhelm Lenz, is a mathematical model of ferromagnetism in statistical mechanics.The model consists of discrete variables that represent magnetic dipole moments of atomic "spins" that can be in one of two states (+1 or −1).

  9. Magnetization - Wikipedia

    en.wikipedia.org/wiki/Magnetization

    In classical electromagnetism, magnetization is the vector field that expresses the density of permanent or induced magnetic dipole moments in a magnetic material. Accordingly, physicists and engineers usually define magnetization as the quantity of magnetic moment per unit volume. [1] It is represented by a pseudovector M.