enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lorenz system - Wikipedia

    en.wikipedia.org/wiki/Lorenz_system

    A sample solution in the Lorenz attractor when ρ = 28, σ = 10, and β = ⁠ 8 / 3 ⁠. The Lorenz system is a system of ordinary differential equations first studied by mathematician and meteorologist Edward Lorenz.

  3. Butterfly effect - Wikipedia

    en.wikipedia.org/wiki/Butterfly_effect

    A plot of Lorenz' strange attractor for values ρ=28, σ = 10, β = 8/3. The butterfly effect or sensitive dependence on initial conditions is the property of a dynamical system that, starting from any of various arbitrarily close alternative initial conditions on the attractor, the iterated points will become arbitrarily spread out from each other.

  4. Portal:Systems science/Picture - Wikipedia

    en.wikipedia.org/wiki/Portal:Systems_science/Picture

    The Lorenz attractor is a 3-dimensional structure corresponding to the long-term behavior of a chaotic flow, noted for its butterfly shape. The map shows how the state of a dynamical system (the three variables of a three-dimensional system) evolves over time in a complex, non-repeating pattern.

  5. Dynamical system - Wikipedia

    en.wikipedia.org/wiki/Dynamical_system

    The Lorenz attractor arises in the study of the Lorenz oscillator, a dynamical system.. In mathematics, a dynamical system is a system in which a function describes the time dependence of a point in an ambient space, such as in a parametric curve.

  6. Portal:Mathematics/Selected picture/3 - Wikipedia

    en.wikipedia.org/wiki/Portal:Mathematics/...

    The Lorenz attractor is an iconic example of a strange attractor in chaos theory.This three-dimensional fractal structure, resembling a butterfly or figure eight, reflects the long-term behavior of solutions to the Lorenz system, a set of three differential equations used by mathematician and meteorologist Edward N. Lorenz as a simple description of fluid circulation in a shallow layer (of ...

  7. List of chaotic maps - Wikipedia

    en.wikipedia.org/wiki/List_of_chaotic_maps

    Burke-Shaw chaotic attractor [8] continuous: real: 3: 2: Chen chaotic attractor [9] continuous: real: 3: 3: Not topologically conjugate to the Lorenz attractor. Chen-Celikovsky system [10] continuous: real: 3 "Generalized Lorenz canonical form of chaotic systems" Chen-LU system [11] continuous: real: 3: 3: Interpolates between Lorenz-like and ...

  8. Malkus waterwheel - Wikipedia

    en.wikipedia.org/wiki/Malkus_waterwheel

    The Malkus waterwheel, also referred to as the Lorenz waterwheel or chaotic waterwheel, [1] is a mechanical model that exhibits chaotic dynamics. Its motion is governed by the Lorenz equations. While classical waterwheels rotate in one direction at a constant speed, the Malkus waterwheel exhibits chaotic motion where its rotation will speed up ...

  9. Attractor - Wikipedia

    en.wikipedia.org/wiki/Attractor

    Visual representation of a strange attractor. [1] Another visualization of the same 3D attractor is this video.Code capable of rendering this is available.. In the mathematical field of dynamical systems, an attractor is a set of states toward which a system tends to evolve, [2] for a wide variety of starting conditions of the system.