enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Statistical classification - Wikipedia

    en.wikipedia.org/wiki/Statistical_classification

    Since no single form of classification is appropriate for all data sets, a large toolkit of classification algorithms has been developed. The most commonly used include: [ 9 ] Artificial neural networks – Computational model used in machine learning, based on connected, hierarchical functions Pages displaying short descriptions of redirect ...

  3. Generative model - Wikipedia

    en.wikipedia.org/wiki/Generative_model

    For example, GPT-3, and its precursor GPT-2, [11] are auto-regressive neural language models that contain billions of parameters, BigGAN [12] and VQ-VAE [13] which are used for image generation that can have hundreds of millions of parameters, and Jukebox is a very large generative model for musical audio that contains billions of parameters.

  4. Multiclass classification - Wikipedia

    en.wikipedia.org/wiki/Multiclass_classification

    In machine learning and statistical classification, multiclass classification or multinomial classification is the problem of classifying instances into one of three or more classes (classifying instances into one of two classes is called binary classification). For example, deciding on whether an image is showing a banana, an orange, or an ...

  5. Discriminative model - Wikipedia

    en.wikipedia.org/wiki/Discriminative_model

    For example, in Marras' article A Joint Discriminative Generative Model for Deformable Model Construction and Classification, [7] he and his coauthors apply the combination of two modelings on face classification of the models, and receive a higher accuracy than the traditional approach.

  6. Decision tree learning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_learning

    The goal is to create a model that predicts the value of a target variable based on several input variables. A decision tree is a simple representation for classifying examples. For this section, assume that all of the input features have finite discrete domains, and there is a single target feature called the "classification".

  7. Naive Bayes classifier - Wikipedia

    en.wikipedia.org/wiki/Naive_Bayes_classifier

    Naive Bayes is a simple technique for constructing classifiers: models that assign class labels to problem instances, represented as vectors of feature values, where the class labels are drawn from some finite set.

  8. Linear classifier - Wikipedia

    en.wikipedia.org/wiki/Linear_classifier

    In machine learning, a linear classifier makes a classification decision for each object based on a linear combination of its features.Such classifiers work well for practical problems such as document classification, and more generally for problems with many variables (), reaching accuracy levels comparable to non-linear classifiers while taking less time to train and use.

  9. Probabilistic classification - Wikipedia

    en.wikipedia.org/wiki/Probabilistic_classification

    Binary probabilistic classifiers are also called binary regression models in statistics. In econometrics, probabilistic classification in general is called discrete choice. Some classification models, such as naive Bayes, logistic regression and multilayer perceptrons (when trained under an appropriate loss function) are