Search results
Results from the WOW.Com Content Network
In computer science, a deterministic algorithm is an algorithm that, given a particular input, will always produce the same output, with the underlying machine always passing through the same sequence of states. Deterministic algorithms are by far the most studied and familiar kind of algorithm, as well as one of the most practical, since they ...
A stochastic program is an optimization problem in which some or all problem parameters are uncertain, but follow known probability distributions. [1] [2] This framework contrasts with deterministic optimization, in which all problem parameters are assumed to be known exactly. The goal of stochastic programming is to find a decision which both ...
where y is an n × 1 vector of observable state variables, u is a k × 1 vector of control variables, A t is the time t realization of the stochastic n × n state transition matrix, B t is the time t realization of the stochastic n × k matrix of control multipliers, and Q (n × n) and R (k × k) are known symmetric positive definite cost matrices.
In contrast, some authors have argued that randomization can only improve a deterministic algorithm if the deterministic algorithm was poorly designed in the first place. [21] Fred W. Glover [22] argues that reliance on random elements may prevent the development of more intelligent and better deterministic components. The way in which results ...
Originally introduced by Richard E. Bellman in (Bellman 1957), stochastic dynamic programming is a technique for modelling and solving problems of decision making under uncertainty. Closely related to stochastic programming and dynamic programming , stochastic dynamic programming represents the problem under scrutiny in the form of a Bellman ...
The bus engine replacement model developed in the seminal paper Rust (1987) is one of the first dynamic stochastic models of discrete choice estimated using real data, and continues to serve as classical example of the problems of this type. [4]
A stochastic simulation is a simulation of a system that has variables that can change stochastically (randomly) with individual probabilities. [ 1 ] Realizations of these random variables are generated and inserted into a model of the system.
Stochastic music was pioneered by Iannis Xenakis, who coined the term stochastic music. Specific examples of mathematics, statistics, and physics applied to music composition are the use of the statistical mechanics of gases in Pithoprakta, statistical distribution of points on a plane in Diamorphoses, minimal constraints in Achorripsis, the ...