Search results
Results from the WOW.Com Content Network
Memetic algorithm (MA), often called hybrid genetic algorithm among others, is a population-based method in which solutions are also subject to local improvement phases. The idea of memetic algorithms comes from memes , which unlike genes, can adapt themselves.
Genetic programming (GP) is an evolutionary algorithm, an artificial intelligence technique mimicking natural evolution, which operates on a population of programs. It applies the genetic operators selection according to a predefined fitness measure , mutation and crossover .
From genetic algorithms it inherited the linear chromosomes of fixed length; and from genetic programming it inherited the expressive parse trees of varied sizes and shapes. In gene expression programming the linear chromosomes work as the genotype and the parse trees as the phenotype, creating a genotype/phenotype system .
The classic example of a mutation operator of a binary coded genetic algorithm (GA) involves a probability that an arbitrary bit in a genetic sequence will be flipped from its original state. A common method of implementing the mutation operator involves generating a random variable for each bit in a sequence.
A chromosome or genotype in evolutionary algorithms (EA) is a set of parameters which define a proposed solution of the problem that the evolutionary algorithm is trying to solve. The set of all solutions, also called individuals according to the biological model, is known as the population .
Evolutionary programming is an evolutionary algorithm, where a share of new population is created by mutation of previous population without crossover. [ 1 ] [ 2 ] Evolutionary programming differs from evolution strategy ES( μ + λ {\displaystyle \mu +\lambda } ) in one detail. [ 1 ]
Three branches emerged in different places to attain this goal: evolution strategies, evolutionary programming, and genetic algorithms. A fourth branch, genetic programming, eventually emerged in the early 1990s. These approaches differ in the method of selection, the permitted mutations, and the representation of genetic data.
When applying both population models to genetic algorithms, [5] [6] evolutionary strategy [20] [17] [21] and other EAs, [22] [23] the splitting of a total population into subpopulations usually reduces the risk of premature convergence and leads to better results overall more reliably and faster than would be expected with panmictic EAs.