Search results
Results from the WOW.Com Content Network
In computing, sequential access memory (SAM) is a class of data storage devices that read stored data in a sequence. This is in contrast to random access memory (RAM) where data can be accessed in any order. Sequential access devices are usually a form of magnetic storage or optical storage. [1] [2]
Python sets are very much like mathematical sets, and support operations like set intersection and union. Python also features a frozenset class for immutable sets, see Collection types. Dictionaries (class dict) are mutable mappings tying keys and corresponding values. Python has special syntax to create dictionaries ({key: value})
Sequential access is a term describing a group of elements (such as data in a memory array or a disk file or on magnetic-tape data storage) being accessed in a predetermined, ordered sequence. It is the opposite of random access , the ability to access an arbitrary element of a sequence as easily and efficiently as any other at any time.
In Python, a generator can be thought of as an iterator that contains a frozen stack frame. Whenever next() is called on the iterator, Python resumes the frozen frame, which executes normally until the next yield statement is reached. The generator's frame is then frozen again, and the yielded value is returned to the caller.
In IBM mainframe operating systems, Basic sequential access method (BSAM) [1] is an access method to read and write datasets sequentially. BSAM is available on OS/360, OS/VS2, MVS, z/OS, and related operating systems. BSAM is used for devices that are naturally sequential, such as punched card readers, punches, line printers, and magnetic tape.
This guarantees the order of the two addition operations, but potentially introduces a new problem of address aliasing: any of these pointers could potentially refer to the same memory location. For example, let's assume in this example that *c and *sum are aliased to the same memory location, and rewrite both versions of the program with *sum ...
Indexed Sequential Access Method (ISAM) is a method for creating, maintaining, and manipulating computer files of data so that records can be retrieved sequentially or randomly by one or more keys. Indexes of key fields are maintained to achieve fast retrieval of required file records in indexed files .
Examples for such are the ABA problem, race conditions, and deadlocks. The extent in which these problems manifest or even occur at all depends on the implementation of the concurrent hash table; specifically which operations the table allows to be run concurrently, as well as its strategies for mitigating problems associated with contention.