Search results
Results from the WOW.Com Content Network
Doctor reviewing a radiation treatment plan. In radiotherapy, radiation treatment planning (RTP) is the process in which a team consisting of radiation oncologists, radiation therapist, medical physicists and medical dosimetrists plan the appropriate external beam radiotherapy or internal brachytherapy treatment technique for a patient with cancer.
Information on movements is fed back to the radiation therapist, who is alerted if the patient moves from the optimal position (as determined by their treatment plan). SGRT systems can be set to automatically stop the delivery of radiation if a patient moves outside of a certain tolerance level.
Although this type of image is an excellent indication of the basic quality of the treatment plan, the quality of film images can be poor. A BEV can be created using a radiation therapy simulator which mimics the treatment geometry (couch angle, gantry angle, etc.) using an X-ray source instead of the higher energy treatment source.
The pattern of radiation delivery is determined using highly tailored computing applications to perform optimization and treatment simulation (Treatment Planning). The radiation dose is consistent with the 3-D shape of the tumor by controlling, or modulating, the radiation beam's intensity.
In modern radiation therapy, 3D dose distributions are typically created in a computerized treatment planning system (TPS) based on a 3D reconstruction of a CT scan. The "volume" referred to in DVH analysis is a target of radiation treatment, a healthy organ nearby a target, or an arbitrary structure.
Although many efforts were undertaken to diversify and extend its applications in radiation protection, radiation therapy, and medical imaging, one cannot overcome its inborn limitation. The representation of internal organs in this mathematical phantom was crude, by capturing only the most general description of the position and geometry of ...
Currently, certain radiation therapy techniques employ the process of intensity-modulated radiotherapy (IMRT). This form of radiation treatment uses computers and linear accelerators to sculpt a three-dimensional radiation dose map, specific to the target's location, shape and motion characteristics.
An isocentric technique is where all beams used in a radiation treatment have a common focus point, a.k.a. the isocenter. Isocentric techniques require less patient repositioning as multiple field arrangements can be delivered with gantry and collimator movements, reducing treatment times. [1]