Search results
Results from the WOW.Com Content Network
Boilers using the pressure jet type of burner, i.e. with a fan, (usually with 35 second oil) can achieve a turndown ratio of 2, while the rotary cup type burner can achieve 4. [3] Condensing oil boilers are fairly unusual; the condensate from the combustion of oil is far more aggressive than gas, mainly due to sulphur content.
The annual fuel utilization efficiency (AFUE; pronounced 'A'-'Few' or 'A'-'F'-'U'-'E') is a thermal efficiency measure of space-heating furnaces and boilers.The AFUE differs from the true 'thermal efficiency' in that it is not a steady-state, peak measure of conversion efficiency, but instead attempts to represent the actual, season-long, average efficiency of that piece of equipment ...
Almost all have modulating burners. These allow the power to be reduced to match the demand. Boilers have a turndown ratio which is the ratio of the maximum power output to the minimum power output for which combustion can be maintained. If the control system determines that the demand falls below the minimum power output, then the boiler will ...
Compressor characteristic is a mathematical curve that shows the behaviour of a fluid going through a dynamic compressor.It shows changes in fluid pressure, temperature, entropy, flow rate etc.) with the compressor operating at different speeds.
A ratio of 1 corresponds to the stoichiometric ratio Constant volume flame temperature of a number of fuels, with air. If we make the assumption that combustion goes to completion (i.e. forming only CO 2 and H 2 O), we can calculate the adiabatic flame temperature by hand either at stoichiometric conditions or lean of stoichiometry (excess air ...
Here, represents the mass ratio of gas 'x' (meaning mass of gas 'x' relative to the mass of all other non-'x' gas mass) and is the partial pressure of gas 'x'. Using the ideal gas formulation for the mass ratio gives the following definition for the specific mass capacity:
Air–fuel equivalence ratio, λ (lambda), is the ratio of actual AFR to stoichiometry for a given mixture. λ = 1.0 is at stoichiometry, rich mixtures λ < 1.0, and lean mixtures λ > 1.0. There is a direct relationship between λ and AFR. To calculate AFR from a given λ, multiply the measured λ by the
Energy conversion efficiency (η) is the ratio between the useful output of an energy conversion machine and the input, in energy terms. The input, as well as the useful output may be chemical, electric power, mechanical work, light (radiation), or heat. The resulting value, η (eta), ranges between 0 and 1. [1] [2] [3]