Search results
Results from the WOW.Com Content Network
For a given locus, if the two chromosomes contain the same allele, they, and the organism, are homozygous with respect to that allele. If the alleles are different, they, and the organism, are heterozygous with respect to those alleles. Popular definitions of 'allele' typically refer only to different alleles within genes.
As an example, one allele for the gene for hair color could instruct the body to produce much pigment, producing black hair, while a different allele of the same gene might give garbled instructions that fail to produce any pigment, giving white hair. Mutations are random changes in genes and can create new alleles. Mutations can also produce ...
Diploid organisms with two copies of the same allele of a given gene are called homozygous at that gene locus, while organisms with two different alleles of a given gene are called heterozygous. The set of alleles for a given organism is called its genotype, while the observable traits of the organism are called its phenotype.
Alleles at a locus may be dominant or recessive; dominant alleles give rise to their corresponding phenotypes when paired with any other allele for the same trait, whereas recessive alleles give rise to their corresponding phenotype only when paired with another copy of the same allele. If you know the genotypes of the organisms, you can ...
In a sample of almost 1 million people, almost 5000 genes were identified that had loss-of-function variants in both alleles of the same individual. That is, if these 5000 genes can tolerate homozygous loss of function mutations, they are unlikely to be essential. [100]
Genotype can also be used to refer to the alleles or variants an individual carries in a particular gene or genetic location. [2] The number of alleles an individual can have in a specific gene depends on the number of copies of each chromosome found in that species, also referred to as ploidy. In diploid species like humans, two full sets of ...
An entire gene family may also be lost, or gained through de novo gene birth, by such extensive divergence such that a gene is considered part of a new family, or by horizontal gene transfer. When the number of genes per genome remains relatively constant, this implies that genes are gained and lost at relatively same rates.
Allelic heterogeneity is the phenomenon in which different mutations at the same locus lead to the same or very similar phenotypes.These allelic variations can arise as a result of natural selection processes, as a result of exogenous mutagens, genetic drift, or genetic migration.