Search results
Results from the WOW.Com Content Network
An epitope, also known as antigenic determinant, is the part of an antigen that is recognized by the immune system, specifically by antibodies, B cells, or T cells. The part of an antibody that binds to the epitope is called a paratope .
In immunology, an idiotope is the unique set of antigenic determinants (epitopes) of the variable portion of an antibody. [1] In some cases it can be the actual antigen-binding site, and in some cases it may comprise variable region sequences outside of the antigen-binding site on the antibody itself.
Recognition of epitopes in a linear fashion. Note: the same (colored) segment of protein can be a part of more than one epitopes. In immunology, a linear epitope (also sequential epitope) is an epitope—a binding site on an antigen—that is recognized by antibodies by its linear sequence of amino acids (i.e. primary structure).
The molecular region which binds to the epitope is the paratope. On surfaces of helper T cells are CD4 receptors, as well as TCRs. When a naive helper T cell's CD4 molecule docks to an APC's MHC class II molecule, its TCR can meet and bind the epitope coupled within the MHC class II. This event primes the naive T cell.
In immunology, epitope mapping is the process of experimentally identifying the binding site, or epitope, of an antibody on its target antigen (usually, on a protein). [ 1 ] [ 2 ] [ 3 ] Identification and characterization of antibody binding sites aid in the discovery and development of new therapeutics , vaccines , and diagnostics .
An epitope that can be attacked by many different B cells is said to be highly immunogenic. In these cases, the binding affinities for respective epitope-paratope pairs vary, with some B cell clones producing antibodies that bind strongly to the epitope, and others producing antibodies that bind weakly. [1]
The idiotype is based upon the variable region (labeled VL and VH in the diagram.) In immunology, an idiotype is a shared characteristic between a group of immunoglobulin or T-cell receptor (TCR) molecules based upon the antigen binding specificity and therefore structure of their variable region.
Note how the segments widely separated in the primary structure have come in contact in the three-dimensional tertiary structure forming part of the same epitope [1] In immunology, a conformational epitope is a sequence of sub-units (usually amino acids) composing an antigen that come in direct contact with a receptor of the immune system.