enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gauss's method - Wikipedia

    en.wikipedia.org/wiki/Gauss's_method

    NOTE: Gauss's method is a preliminary orbit determination, with emphasis on preliminary. The approximation of the Lagrange coefficients and the limitations of the required observation conditions (i.e., insignificant curvature in the arc between observations, refer to Gronchi [2] for more details) causes inaccuracies.

  3. Gaussian algorithm - Wikipedia

    en.wikipedia.org/wiki/Gaussian_algorithm

    Download as PDF; Printable version; ... Gauss's algorithm for Determination of the day of the week; Gauss's method for preliminary orbit determination;

  4. Gauss–Laguerre quadrature - Wikipedia

    en.wikipedia.org/wiki/Gauss–Laguerre_quadrature

    In numerical analysis Gauss–Laguerre quadrature (named after Carl Friedrich Gauss and Edmond Laguerre) is an extension of the Gaussian quadrature method for approximating the value of integrals of the following kind: + (). In this case

  5. Gauss–Legendre method - Wikipedia

    en.wikipedia.org/wiki/Gauss–Legendre_method

    Gauss–Legendre methods are implicit Runge–Kutta methods. More specifically, they are collocation methods based on the points of Gauss–Legendre quadrature. The Gauss–Legendre method based on s points has order 2s. [1] All Gauss–Legendre methods are A-stable. [2] The Gauss–Legendre method of order two is the implicit midpoint rule.

  6. Generalized Gauss–Newton method - Wikipedia

    en.wikipedia.org/wiki/Generalized_Gauss–Newton...

    The generalized Gauss–Newton method is a generalization of the least-squares method originally described by Carl Friedrich Gauss and of Newton's method due to Isaac Newton to the case of constrained nonlinear least-squares problems.

  7. Gauss–Jacobi quadrature - Wikipedia

    en.wikipedia.org/wiki/Gauss–Jacobi_quadrature

    Thus, Gauss–Jacobi quadrature can be used to approximate integrals with singularities at the end points. Gauss–Legendre quadrature is a special case of Gauss–Jacobi quadrature with α = β = 0. Similarly, the Chebyshev–Gauss quadrature of the first (second) kind arises when one takes α = β = −0.5 (+0.5).

  8. CDC monitors bird flu as rare human case sparks concerns - AOL

    www.aol.com/news/cdc-monitors-bird-flu-rare...

    The recommended steps include limiting farm visitors, disinfecting equipment, keeping flocks away from wild birds, and avoiding exposure whenever possible. Show comments. Advertisement.

  9. Gauss–Seidel method - Wikipedia

    en.wikipedia.org/wiki/Gauss–Seidel_method

    At any step in a Gauss-Seidel iteration, solve the first equation for in terms of , …,; then solve the second equation for in terms of just found and the remaining , …,; and continue to . Then, repeat iterations until convergence is achieved, or break if the divergence in the solutions start to diverge beyond a predefined level.