Search results
Results from the WOW.Com Content Network
A problem statement is a description of an issue to be addressed, or a condition to be improved upon. It identifies the gap between the current problem and goal. The first condition of solving a problem is understanding the problem, which can be done by way of a problem statement.
The problem of determining if a given set of Wang tiles can tile the plane. The problem of determining the Kolmogorov complexity of a string. Hilbert's tenth problem: the problem of deciding whether a Diophantine equation (multivariable polynomial equation) has a solution in integers.
The Monty Hall problem is a brain teaser, in the form of a probability puzzle, based nominally on the American television game show Let's Make a Deal and named after its original host, Monty Hall. The problem was originally posed (and solved) in a letter by Steve Selvin to the American Statistician in 1975.
Sleeping Beauty problem: A probability problem that can be correctly answered as one half or one third depending on how the question is approached. Three Prisoners problem , also known as the Three Prisoners paradox: [ 3 ] A variation of the Monty Hall problem .
One description of the problem states that we look into a window, see only one child and it is a boy. This sounds like the same assumption. However, this one is equivalent to "sampling" the distribution (i.e. removing one child from the urn, ascertaining that it is a boy, then replacing). Let's call the statement "the sample is a boy ...
A decision problem whose input consists of strings or more complex values is formalized as the set of numbers that, via a specific Gödel numbering, correspond to inputs that satisfy the decision problem's criteria. A decision problem A is called decidable or effectively solvable if the formalized set of A is a recursive set.
The assignment problem is a fundamental combinatorial optimization problem. In its most general form, the problem is as follows: The problem instance has a number of agents and a number of tasks. Any agent can be assigned to perform any task, incurring some cost that may vary depending on the agent-task assignment.
The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric. The problem is known to be NP-hard with the (non-discretized) Euclidean metric. [3]: ND22, ND23