Search results
Results from the WOW.Com Content Network
International Components for Unicode (ICU) is an open-source project of mature C/C++ and Java libraries for Unicode support, software internationalization, and software globalization. ICU is widely portable to many operating systems and environments. It gives applications the same results on all platforms and between C, C++, and Java software.
Converts Unicode character codes, always given in hexadecimal, to their UTF-8 or UTF-16 representation in upper-case hex or decimal. Can also reverse this for UTF-8. The UTF-16 form will accept and pass through unpaired surrogates e.g. {{#invoke:Unicode convert|getUTF8|D835}} → D835.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
The Joliet file system, used in CD-ROM media, encodes file names using UCS-2BE (up to sixty-four Unicode characters per file name). Python version 2.0 officially only used UCS-2 internally, but the UTF-8 decoder to "Unicode" produced correct UTF-16. There was also the ability to compile Python so that it used UTF-32 internally, this was ...
Many Unicode characters are used to control the interpretation or display of text, but these characters themselves have no visual or spatial representation. For example, the null character (U+0000 NULL) is used in C-programming application environments to indicate the end of a string of characters.
UTF-32 (32-bit Unicode Transformation Format), sometimes called UCS-4, is a fixed-length encoding used to encode Unicode code points that uses exactly 32 bits (four bytes) per code point (but a number of leading bits must be zero as there are far fewer than 2 32 Unicode code points, needing actually only 21 bits). [1]
If this file is opened with a text editor that assumes the input is UTF-8, the first and third bytes are valid UTF-8 encodings of ASCII, but the second byte (0xFC) is not valid in UTF-8. The text editor could replace this byte with the replacement character to produce a valid string of Unicode code points for display, so the user sees "f r".
Namely, by the standard, in UTF-8 there is only one valid byte sequence for any Unicode character, [1] but some byte sequences are invalid, i.e., they cannot be obtained by encoding any string of Unicode characters into UTF-8. Some sloppy decoder implementations may accept invalid byte sequences as input and produce a valid Unicode character as ...