Search results
Results from the WOW.Com Content Network
The first uses of test crosses were in Gregor Mendel’s experiments in plant hybridization.While studying the inheritance of dominant and recessive traits in pea plants, he explains that the “signification” (now termed zygosity) of an individual for a dominant trait is determined by the expression patterns of the following generation.
A cross between two four o'clock (Mirabilis jalapa) plants shows an exception to Mendel's principle, called incomplete dominance. Flowers of heterozygous plants have a phenotype somewhere between the two homozygous genotypes. In cases of intermediate inheritance (incomplete dominance) in the F 1-generation Mendel's principle of uniformity in ...
dominance A relationship between the alleles of a gene in which one allele produces an effect on phenotype that overpowers or "masks" the contribution of another allele at the same locus; the first allele and its associated phenotypic trait are said to be dominant, and the second allele and its associated trait are said to be recessive. Often ...
The phenomenon has long been known in animals and plants. Heterosis appears to be largely due to genetic complementation, that is the masking of deleterious recessive alleles in hybrid individuals. In general, the two fundamental aspects of sexual reproduction in eukaryotes are meiosis and outcrossing. These two aspects have been proposed to ...
Compared to a population in which all S alleles are co-dominant, the presence of dominance relationships in the population raises the chances of compatible mating between individuals. [25] The frequency ratio between recessive and dominant S alleles reflects a dynamic balance between reproductive assurance (favoured by recessive alleles) and ...
Co-dominant expression of genes for plumage colours. In cases of co-dominance, the genetic traits of both different alleles of the same gene-locus are clearly expressed in the phenotype. For example, in certain varieties of chicken, the allele for black feathers is co-dominant with the allele for white feathers.
Evidence from research regarding coloration in Heliconius butterflies suggests that disassortative mating is more likely to emerge when phenotypic variation is based on self-referencing (mate preference depends on phenotype of the choosing individual, therefore dominance in relationships influence the evolution of disassortative mating).
The mechanism of apical dominance is based on auxins, types of plant growth regulators. These are produced in the apical meristem and transported towards the roots in the cambium. If apical dominance is complete, they prevent any branches from forming as long as the apical meristem is active. If the dominance is incomplete, side branches will ...