enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of equations in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in_fluid...

    Flux F through a surface, dS is the differential vector area element, n is the unit normal to the surface. Left: No flux passes in the surface, the maximum amount flows normal to the surface.

  3. Derivation of the Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the_Navier...

    One can measure a given property by either carrying out the measurement on a fixed point in space as particles of the fluid pass by, or by following a parcel of fluid along its streamline. The derivative of a field with respect to a fixed position in space is called the Eulerian derivative, while the derivative following a moving parcel is ...

  4. Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Navier–Stokes_equations

    Assuming conservation of mass, with the known properties of divergence and gradient we can use the mass continuity equation, which represents the mass per unit volume of a homogenous fluid with respect to space and time (i.e., material derivative) of any finite volume (V) to represent the change of velocity in fluid media ...

  5. Stokes' law - Wikipedia

    en.wikipedia.org/wiki/Stokes'_law

    If correctly selected, it reaches terminal velocity, which can be measured by the time it takes to pass two marks on the tube. Electronic sensing can be used for opaque fluids. Knowing the terminal velocity, the size and density of the sphere, and the density of the liquid, Stokes' law can be used to calculate the viscosity of the fluid. A ...

  6. Euler equations (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler_equations_(fluid...

    For constant fluid density, the incompressible equations can be written as a quasilinear advection equation for the fluid velocity together with an elliptic Poisson's equation for the pressure. On the other hand, the compressible Euler equations form a quasilinear hyperbolic system of conservation equations .

  7. Kelvin's circulation theorem - Wikipedia

    en.wikipedia.org/wiki/Kelvin's_circulation_theorem

    The differential operator is a substantial (material) derivative moving with the fluid particles. [3] Stated more simply, this theorem says that if one observes a closed contour at one instant, and follows the contour over time (by following the motion of all of its fluid elements), the circulation over the two locations of this contour remains ...

  8. Liquid - Wikipedia

    en.wikipedia.org/wiki/Liquid

    A liquid is a fluid. Unlike a solid, the molecules in a liquid have a much greater freedom to move. The forces that bind the molecules together in a solid are only temporary in a liquid, allowing a liquid to flow while a solid remains rigid. A liquid, like a gas, displays the properties of a fluid.

  9. Fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Fluid_mechanics

    Fluid mechanics is the branch of physics concerned with the mechanics of fluids (liquids, gases, and plasmas) and the forces on them. [1]: 3 It has applications in a wide range of disciplines, including mechanical, aerospace, civil, chemical, and biomedical engineering, as well as geophysics, oceanography, meteorology, astrophysics, and biology.