Search results
Results from the WOW.Com Content Network
The basic observation is that if, by completing the square, the quadratic expression can be reduced to a sum of two squares then the equation defines an ellipse, whereas if it reduces to a difference of two squares then the equation represents a hyperbola: (,) + (,) = (,) (,) =.
A hyperbola and its conjugate may have diameters which are conjugate. In the theory of special relativity, such diameters may represent axes of time and space, where one hyperbola represents events at a given spatial distance from the center, and the other represents events at a corresponding temporal distance from the center.
Hyperbolic geometry is a non-Euclidean geometry where the first four axioms of Euclidean geometry are kept but the fifth axiom, the parallel postulate, is changed.The fifth axiom of hyperbolic geometry says that given a line L and a point P not on that line, there are at least two lines passing through P that are parallel to L. [1]
The orthogonal group O(1, n) acts by norm-preserving transformations on Minkowski space R 1,n, and it acts transitively on the two-sheet hyperboloid of norm 1 vectors. Timelike lines (i.e., those with positive-norm tangents) through the origin pass through antipodal points in the hyperboloid, so the space of such lines yields a model of ...
The unit hyperbola is blue, its conjugate is green, and the asymptotes are red. In geometry, the unit hyperbola is the set of points (x,y) in the Cartesian plane that satisfy the implicit equation = In the study of indefinite orthogonal groups, the unit hyperbola forms the basis for an alternative radial length
Starting from (1,1) the hyperbolic sector of unit area ends at (e, 1/e), where e is 2.71828…, according to the development of Leonhard Euler in Introduction to the Analysis of the Infinite (1748). Taking (e, 1/e) as the vertex of rectangle of unit area, and applying again the squeeze that made it from the unit square, yields ( e 2 , e − 2 ...
The discussion of plane sections can be performed for the unit hyperboloid of two sheets with equation : + = which can be generated by a rotating hyperbola around one of its axes (the one that cuts the hyperbola) A plane with slope less than 1 (1 is the slope of the asymptotes of the generating hyperbola) intersects either in an ellipse or in a ...
The curve represents xy = 1. A hyperbolic angle has magnitude equal to the area of the corresponding hyperbolic sector, which is in standard position if a = 1. In geometry, hyperbolic angle is a real number determined by the area of the corresponding hyperbolic sector of xy = 1 in Quadrant I of the Cartesian plane.