Search results
Results from the WOW.Com Content Network
The Journal of Synchrotron Radiation is a bimonthly peer-reviewed scientific journal published by Wiley-Blackwell on behalf of the International Union of Crystallography.It was established in 1994 and covers research on synchrotron radiation and X-ray free-electron lasers and their applications.
Synchrotron radiation was first observed by technician Floyd Haber, on April 24, 1947, at the 70 MeV electron synchrotron of the General Electric research laboratory in Schenectady, New York. [5] While this was not the first synchrotron built, it was the first with a transparent vacuum tube, allowing the radiation to be directly observed.
The impact factor (IF) or journal impact factor (JIF) of an academic journal is a scientometric index calculated by Clarivate that reflects the yearly mean number of citations of articles published in the last two years in a given journal, as indexed by Clarivate's Web of Science.
A journal's SJR indicator is a numeric value representing the average number of weighted citations received during a selected year per document published in that journal during the previous three years, as indexed by Scopus. Higher SJR indicator values are meant to indicate greater journal prestige.
Journal ranking is widely used in academic circles in the evaluation of an academic journal's impact and quality. Journal rankings are intended to reflect the place of a journal within its field, the relative difficulty of being published in that journal, and the prestige associated with it.
The journal is abstracted and indexed in: Chemical Abstracts Service [1] Index Medicus/MEDLINE/PubMed [2] Science Citation Index Expanded [3] Current Contents/Life Sciences [3] BIOSIS Previews [3] Scopus [4] According to the Journal Citation Reports, the journal has a 2019 impact factor of 2.014. 5 year Impact Factor 2.063 [5]
Especially when artificially produced, synchrotron radiation is notable for its: High brilliance, many orders of magnitude more than with X-rays produced in conventional X-ray tubes: 3rd-generation sources typically have a brilliance larger than 10 18 photons·s −1 ·mm −2 ·mrad −2 /(0.1%BW), where 0.1%BW denotes a bandwidth 10 −3 ω centered around the frequency ω.
Oleg G. Shpyrko X-ray photon correlation spectroscopy J. Synchrotron Radiation 2014, 21 (5), 1057–1064. doi: 10.1107/S1600577514018232; Sunil K. Sinha, Zhang Jiang, Laurence B. Lurio X-ray Photon Correlation Spectroscopy Studies of Surfaces and Thin Films Advanced Materials 2014, 26 (46), 7764–7785. doi: 10.1002/adma.201401094