Search results
Results from the WOW.Com Content Network
Electron-beam processing involves irradiation (treatment) of products using a high-energy electron-beam accelerator. Electron-beam accelerators utilize an on-off technology, with a common design being similar to that of a cathode ray television. Electron-beam processing is used in industry primarily for three product modifications:
Research in this area has focused on the three most common sources of radiation used for these applications, including gamma, electron beam, and x-ray radiation. [17] The mechanisms of radiation damage are different for polymers and metals, since dislocations and grain boundaries do not have real significance in a polymer.
Very high energies from electron beams from particle accelerators, reaching tens of megaelectronvolts, can be deeply penetrating. Conversely, megavolt-scale beams can deposit their energy deeper with less damage to the dermis; modern radiotherapy electron beam accelerators take advantage of this.
External beam radiation therapy (EBRT) is a form of radiotherapy that utilizes a high-energy collimated beam of ionizing radiation, from a source outside the body, to target and kill cancer cells. The radiotherapy beam is composed of particles, which are focussed in a particular direction of travel using collimators [ 1 ] .
Electron beam therapy is used in the treatment of superficial tumors like cancer of skin regions, or total skin (e.g. mycosis fungoides), diseases of the limbs (e.g. melanoma and lymphoma), nodal irradiation, and it may also be used to boost the radiation dose to the surgical bed after mastectomy or lumpectomy.
Electron-beam machining is a process in which high-velocity electrons are concentrated into a narrow beam with a very high planar power density. The beam cross-section is then focused and directed toward the work piece, creating heat and vaporizing the material. Electron-beam machining can be used to accurately cut or bore a wide variety of metals.
Intraoperative electron radiation therapy is the application of electron radiation directly to the residual tumor or tumor bed during cancer surgery. [1] [2] Electron beams are useful for intraoperative radiation treatment because, depending on the electron energy, the dose falls off rapidly behind the target site, therefore sparing underlying healthy tissue.
The types of radiation that can alter structural materials are neutron radiation, ion beams, electrons (beta particles), and gamma rays.All of these forms of radiation have the capability to displace atoms from their lattice sites, which is the fundamental process that drives the changes in structural metals.