enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rational function - Wikipedia

    en.wikipedia.org/wiki/Rational_function

    In mathematics, a rational function is any function that can be defined by a rational fraction, which is an algebraic fraction such that both the numerator and the denominator are polynomials. The coefficients of the polynomials need not be rational numbers ; they may be taken in any field K .

  3. Runge's theorem - Wikipedia

    en.wikipedia.org/wiki/Runge's_theorem

    Given a holomorphic function f on the blue compact set and a point in each of the holes, one can approximate f as well as desired by rational functions having poles only at those three points. In complex analysis , Runge's theorem (also known as Runge's approximation theorem ) is named after the German mathematician Carl Runge who first proved ...

  4. Betti number - Wikipedia

    en.wikipedia.org/wiki/Betti_number

    Informally, the kth Betti number refers to the number of k-dimensional holes on a topological surface. A "k-dimensional hole" is a k-dimensional cycle that is not a boundary of a (k+1)-dimensional object. The first few Betti numbers have the following definitions for 0-dimensional, 1-dimensional, and 2-dimensional simplicial complexes:

  5. 10 Hard Math Problems That Even the Smartest People in the ...

    www.aol.com/10-hard-math-problems-even-150000090...

    Down the Rabbit Hole: The Math That Helps the James Webb Space Telescope Sit Steady in Space. ... For example, if s=2, then 𝜁(s ... All you need to recall is the definition of rational numbers.

  6. Zeros and poles - Wikipedia

    en.wikipedia.org/wiki/Zeros_and_poles

    Technically, a point z 0 is a pole of a function f if it is a zero of the function 1/f and 1/f is holomorphic (i.e. complex differentiable) in some neighbourhood of z 0. A function f is meromorphic in an open set U if for every point z of U there is a neighborhood of z in which at least one of f and 1/f is holomorphic.

  7. Function field (scheme theory) - Wikipedia

    en.wikipedia.org/wiki/Function_field_(scheme_theory)

    The sheaf of rational functions K X of a scheme X is the generalization to scheme theory of the notion of function field of an algebraic variety in classical algebraic geometry. In the case of algebraic varieties , such a sheaf associates to each open set U the ring of all rational functions on that open set; in other words, K X ( U ) is the ...

  8. Hardy field - Wikipedia

    en.wikipedia.org/wiki/Hardy_field

    This is a field since F is, and since the derivative of every function in this field is 0 which must be in F it is a Hardy field. A less trivial example of a Hardy field is the field of rational functions on R, denoted R(x). This is the set of functions of the form P(x)/Q(x) where P and Q are polynomials with real

  9. Asymptote - Wikipedia

    en.wikipedia.org/wiki/Asymptote

    A common example of a vertical asymptote is the case of a rational function at a point x such that the denominator is zero and the numerator is non-zero. If a function has a vertical asymptote, then it isn't necessarily true that the derivative of the function has a vertical asymptote at the same place. An example is