Search results
Results from the WOW.Com Content Network
The nif genes are genes encoding enzymes involved in the fixation of atmospheric nitrogen into a form of nitrogen available to living organisms. The primary enzyme encoded by the nif genes is the nitrogenase complex which is in charge of converting atmospheric nitrogen (N 2) to other nitrogen forms such as ammonia which the organism can use for various purposes.
A method for nitrogen fixation was first described by Henry Cavendish in 1784 using electric arcs reacting nitrogen and oxygen in air. This method was implemented in the Birkeland–Eyde process of 1903. [67] The fixation of nitrogen by lightning is a very similar natural occurring process.
nifRLA operon: The tight expression regulation of the nitrogen fixation (nif) genes is mediated by the products of the nifRLA operon. NifA activates transcription of nif genes by the alternative form of RNA polymerase, s54-holoenzyme. NifL is a negative regulatory gene which inhibits the activation of other nif genes by nifA protein.
Nitrogenase is an enzyme responsible for catalyzing nitrogen fixation, which is the reduction of nitrogen (N 2) to ammonia (NH 3) and a process vital to sustaining life on Earth. [9] There are three types of nitrogenase found in various nitrogen-fixing bacteria: molybdenum (Mo) nitrogenase, vanadium (V) nitrogenase, and iron-only (Fe ...
Utilizing a large amount of metabolic energy and the enzyme nitrogenase, some bacteria and cyanobacteria convert atmospheric N 2 to NH 3, a process known as biological nitrogen fixation (BNF). [4] The anthropogenic analogue to BNF is the Haber-Bosch process, in which H 2 is reacted with atmospheric N 2 at high temperatures and pressures to ...
The heterocysts' unique structure and physiology require a global change in gene expression. For example, heterocysts: produce three additional cell walls, including one of glycolipid that forms a hydrophobic barrier to oxygen; produce nitrogenase and other proteins involved in nitrogen fixation; degrade photosystem II, which produces oxygen
Nitrogenase is the enzyme that catalyzes the conversion of atmospheric nitrogen molecules N 2 into ammonia (NH 3) through the process known as nitrogen fixation. Because it contains iron and molybdenum, the cofactor is called FeMoco. Its stoichiometry is Fe 7 MoS 9 C.
Nitrogen is the most commonly limiting nutrient in plants. Legumes use nitrogen fixing bacteria, specifically symbiotic rhizobia bacteria, within their root nodules to counter the limitation. Rhizobia bacteria convert nitrogen gas (N 2) to ammonia (NH 3) in a process called nitrogen fixation.