Search results
Results from the WOW.Com Content Network
As φ has a range of 360° the same considerations as in polar (2 dimensional) coordinates apply whenever an arctangent of it is taken. θ has a range of 180°, running from 0° to 180°, and does not pose any problem when calculated from an arccosine, but beware for an arctangent.
The reference point (analogous to the origin of a Cartesian coordinate system) is called the pole, and the ray from the pole in the reference direction is the polar axis. The distance from the pole is called the radial coordinate, radial distance or simply radius, and the angle is called the angular coordinate, polar angle, or azimuth. [1]
and and are the equatorial radius (semi-major axis) and the polar radius (semi-minor axis), respectively. = is the square of the first numerical eccentricity of the ellipsoid. = is the flattening of the ellipsoid.
Suppose a rectangular xyz-coordinate system is rotated around its z axis counterclockwise (looking down the positive z axis) through an angle , that is, the positive x axis is rotated immediately into the positive y axis. The z coordinate of each point is unchanged and the x and y coordinates transform as above.
Once the radius is fixed, the three coordinates (r, θ, φ), known as a 3-tuple, provide a coordinate system on a sphere, typically called the spherical polar coordinates. The plane passing through the origin and perpendicular to the polar axis (where the polar angle is a right angle) is called the reference plane (sometimes fundamental plane).
An alternative parametrization exists that closely follows the angular parametrization of spherical coordinates: [1] = , = , = . Here, > parametrizes the concentric ellipsoids around the origin and [,] and [,] are the usual polar and azimuthal angles of spherical coordinates, respectively.
On scientific calculators the function can often be calculated as the angle given when (x, y) is converted from rectangular coordinates to polar coordinates. Systems supporting symbolic mathematics normally return an undefined value for atan2(0, 0) or otherwise signal that an abnormal condition has arisen.
The second expression is for a polar graph = parameterized by =. Now let C ( t ) = ( r ( t ) , θ ( t ) , ϕ ( t ) ) {\displaystyle \mathbf {C} (t)=(r(t),\theta (t),\phi (t))} be a curve expressed in spherical coordinates where θ {\displaystyle \theta } is the polar angle measured from the positive z {\displaystyle z} -axis and ϕ ...