enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Secant method - Wikipedia

    en.wikipedia.org/wiki/Secant_method

    In numerical analysis, the secant method is a root-finding algorithm that uses a succession of roots of secant lines to better approximate a root of a function f. The secant method can be thought of as a finite-difference approximation of Newton's method , so it is considered a quasi-Newton method .

  3. Secant line - Wikipedia

    en.wikipedia.org/wiki/Secant_line

    As Q approaches P along the curve, if the slope of the secant approaches a limit value, then that limit defines the slope of the tangent line at P. [1] The secant lines PQ are the approximations to the tangent line. In calculus, this idea is the geometric definition of the derivative. The tangent line at point P is a secant line of the curve

  4. Numerical differentiation - Wikipedia

    en.wikipedia.org/wiki/Numerical_differentiation

    The slope of this line is (+) (). This formula is known as the symmetric difference quotient. In this case the first-order errors cancel, so the slope of these secant lines differ from the slope of the tangent line by an amount that is approximately proportional to .

  5. Slope - Wikipedia

    en.wikipedia.org/wiki/Slope

    Slope illustrated for y = (3/2)x − 1.Click on to enlarge Slope of a line in coordinates system, from f(x) = −12x + 2 to f(x) = 12x + 2. The slope of a line in the plane containing the x and y axes is generally represented by the letter m, [5] and is defined as the change in the y coordinate divided by the corresponding change in the x coordinate, between two distinct points on the line.

  6. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.

  7. Difference quotient - Wikipedia

    en.wikipedia.org/wiki/Difference_quotient

    Geometrically, this difference quotient measures the slope of the secant line passing through the points with coordinates (a, f(a)) and (b, f(b)). [10] Difference quotients are used as approximations in numerical differentiation, [8] but they have also been subject of criticism in this application. [11]

  8. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    If the two points that the secant line goes through are close together, then the secant line closely resembles the tangent line, and, as a result, its slope is also very similar: The dotted line goes through the points ( 2 , 4 ) {\displaystyle (2,4)} and ( 3 , 9 ) {\displaystyle (3,9)} , which both lie on the curve y = x 2 {\displaystyle y=x^{2}} .

  9. Inverse trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Inverse_trigonometric...

    Domain of tangent and secant : The domains of and are the same. They are the set of all angles θ {\displaystyle \theta } at which cos ⁡ θ ≠ 0 , {\displaystyle \cos \theta \neq 0,}